Article contents
Packaging MEM Sensor Arrays
Published online by Cambridge University Press: 10 February 2011
Abstract
Many applications of MEM sensors require hermetic or high vacuum packaging of sensor clusters. For example, multiple gyroscopes or accelerometers are fabricated on a single chip to improve alignment and stability of input axes or increase the dynamic range of instruments. Chemical sensors are fabricated as large arrays to both improve selectivity and increase the number of species that can be detected. Still larger arrays of sensors must be packaged for hydrophone and bolometer imaging devices. All of these applications place a demanding combination of requirements on the sensor package. The electrical outputs of the sensor array must be well isolated from each other as well as power and excitation signals, while parasitic capacitance is minimized. The package must also be capable of being evacuated and sealed to achieve a pressure of 5 millitorr with a leakage rate below 10−11 [Std cc sec−l]. Finally, the package must be compact and low cost to realize these same attributes of the MEM sensor. This paper describes a packaging approach that is based on low temperature cofired ceramic materials. This technology meets the packaging requirements of sensor arrays and is well suited to the research environment in which the sensor design is continually evolving.
- Type
- Research Article
- Information
- Copyright
- Copyright © Materials Research Society 2000
References
- 1
- Cited by