Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-28T23:18:08.587Z Has data issue: false hasContentIssue false

Oxygen Related Defect Center Red Room Temperature Photoluminescence in as Made and Oxidized Porous Silicon

Published online by Cambridge University Press:  15 February 2011

S. M. Prokes
Affiliation:
Naval Research Laboratory, Washington, D.C. 20375
W. E. Carlos
Affiliation:
Naval Research Laboratory, Washington, D.C. 20375
Get access

Abstract

Since bulk silicon does not emit light in the visible part of the spectrum, the discovery of strong visible luminescence from porous silicon has been quite surprising and has generated significant interest. This material differs from bulk silicon in that it consists of interconnected silicon nanostructures, having very large surface to volume ratios. The first emission mechanism proposed involved carrier recombination within quantum size silicon particles, but more recent work has shown that surface emission models are more likely. In this paper, an interfacial oxygen center luminescence model will be discussed, with supporting experimental data. A direct correlation between the presence of these centers and the red photoluminescence in both as-made and oxidized PoSi will also be presented.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Canham, L. T., Appl. Phys. Lett. 57 (1990) 1046.Google Scholar
2 Bsiesy, A., Vial, J. C., Gaspard, F., Herino, R., Ligeon, M., Muller, F., Romestein, R., Wasiela, A., Halimaoui, A. and Bomchil, G., Surface Science 254 (1991) 195.Google Scholar
3 Cullis, A. G. and Canham, L. T., Nature 353 (1991) 335.Google Scholar
4 Sui, Zhifeng, Leong, Patrick P., Herman, Irving P., Higashi, Gregg S. and Temkin, Henryk, Appl. Phys. Lett. 60 (1992) 2086.Google Scholar
5 Calcott, P. D. J., Nash, K. J., Canham, L. T., Kane, M. J. and Brumhead, D., J. Lumin. 57, (1993) 257.Google Scholar
6 Prokes, S. M., J. Materials Research, in press.Google Scholar
7 Kanemitsu, Y., Uto, H., Matsumoto, Y., Futagi, T. and Mimura, H., Phys. Rev. B48 (1993) 2827.Google Scholar
8 Prokes, S. M. and Glembocki, O. J., Phys. Rev. B49 (1994) 2238.Google Scholar
9 Prokes, S. M., Appl. Phys. Lett. 62 (1993) 3244.Google Scholar
10 Petrova-Koch, V., Muschik, T., Kux, A., Meyer, B. K., Koch, F. and Lehmann, V., Appl. Phys. Lett. 61 (1992) 943.Google Scholar
11 Prokes, S. M., Glembocki, O. J., Bermudez, V. M., Kaplan, R., Friedersdorf, L. E. and Searson, P. C., Phys. Rev. B45 (1992) 13788.Google Scholar
12 Brandt, M. S., Fuchs, H. D., Stutzmann, M., Weber, J., and Cardona, M., Solid State Comm. 81 (1992) 302.Google Scholar
13 Skuja, L. N. and Silin, A. R., Phys. Stat. Sol. A56 (1979) Kll–K13.Google Scholar
14 Koch, F., Petrova-Koch, V., Muschik, T., Nikolov, A. and Gavrilenko, V., Mat. Res. Soc. Proc. 238 (1993) 197.Google Scholar
15 Griscom, D. L., J. Ceramic Soc. of Jap. 99 (1991) 923; and references therein.Google Scholar
16 Prokes, S. M. and Glembocki, O. J., Phys. Rev. B 51, 11183 (1995).Google Scholar
17 Munekuni, S., Yamanaka, T., Shimogaichi, Y., Tohmon, R., Ohki, Y., Nagasawa, K. and Hama, Y., J. Appl. Phys. 68 (1990) 1212.Google Scholar
18 Carlos, W. E. and Prokes, S. M., Appl. Phys. Let. 65, 12451247 (1994).Google Scholar
19 Prokes, S. M., Carlos, W. E. and Glembocki, O. J., Phys. Rev. B 50, 17093 (1994).Google Scholar
20 Carlos, W. E. and Prokes, S. M., J. Appl. Phys. 78, 2129 (1995); S.M.Prokes and W.E.Carlos, J. Appl. Phys. 78, (1995) 2671.Google Scholar
21 Stesmans, A. and Scheerlinck, F., Phys. Rev. B 50, 5204 (1994).Google Scholar