Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-27T02:04:11.910Z Has data issue: false hasContentIssue false

Oxygen Precipitation in Silicon - Its Effects on Minority Carrier Recombination and Generation Lifetime

Published online by Cambridge University Press:  15 February 2011

C. J. Varker
Affiliation:
Semiconductor Research and Development Laboratories, Motorola, Inc., 5005 E. McDowell Road, Phoenix, Arizona, USA
J. D. Whitfield
Affiliation:
Semiconductor Research and Development Laboratories, Motorola, Inc., 5005 E. McDowell Road, Phoenix, Arizona, USA
P. L. Fejes
Affiliation:
Semiconductor Research and Development Laboratories, Motorola, Inc., 5005 E. McDowell Road, Phoenix, Arizona, USA
Get access

Abstract

The effects of oxygen precipitation on the minority carrier recombination lifetime (TR) and the carrier generation lifetime (TG) have been characterized for a ‘typical’ silicon crystal grown with the Czochralski method. Infrared (IR) absorption measurements were obtained on polished wafers, before and after 2 step thermal anneals at 800°C and 1050°C to characterize the axial distribution of interstitial and precipitated oxygen in the ingot. Computerized measurements on NMOS diode and capacitor arrays were used to characterize the axial and radial distributions of carrier lifetime. The results indicate that oxygen precipitation is the dominant mechanism contributing to the degradation of both minority carrier recombination andgeneration lifetime.

Type
Research Article
Copyright
Copyright © Materials Research Society 1982

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Benson, K. E., Lin, W. and Martin, E. P., Semiconductor Silicon 1981, Vol. 81–5, Electrochem. Soc. Inc., Pennington, N.J. (1981), p. 33.Google Scholar
[2] Abe, T., Kikuchi, K., Shirai, S. and Muraoka, S., Semiconductor Silicon 1981, Vol. 81–5, Electrochem. Soc. Inc., Pennington, N.J. (1981), p. 54.Google Scholar
[3] Liaw, H. M., Semiconductor Intl., Oct. (1979), p 71.Google Scholar
[4] Patel, J. R., Semiconductor Silicon 1981, Vol. 81–5, Electrochem. Soc. Inc., Pennington, N.J. (1981), p. 189.Google Scholar
[5] Abe, T., Kikichi, K. and Shirai, S., Semiconductor Silicon 1977, Vol 71–1, Electrochem. Soc. Inc., Princeton, N.J., (1977) p. 95.Google Scholar
[6] Murgai, A., Semiconductor Silicon 1981, Vol 81–5, Electrochem. Soc. Inc., Electrochem. Soc. Inc., Pennington, N.J. (1981), p. 113.Google Scholar
[7] Kishino, S., J. Phys. Soc. Japan 49 Suppl. A, (1980), p 49.Google Scholar
[8] Hu, S. M., J. Appl. Phys. 52 (6), June (1981), p. 3974.Google Scholar
[9] ‘Oxygen in Silicon,’ Silicon Material Processing (II) Semiconductor Silicon 1981, Electrochem. Soc., Pennington, N.J. (1981), pp 208–303.Google Scholar
[10] Varker, C. J., Whitfield, J. D. and Fejes, P., Proceeding of Symposium on Silicon Processing, San Jose, California, Jan. 19–22, 1982.Google Scholar
[11] Kaiser, W., Keck, P. H. and Lange, Phys. Rev. 101, (1956), p. 1254.Google Scholar
[12] Hrostowski, H. J. and Kaiser, R. H., Phys. Rev. 107, (1957), p. 966.Google Scholar
[13] Corbett, J. W., McDonald, R. S. and Watkins, G. C., J. Phys. Chem. Solids, 25, (1964), p. 873 Google Scholar
[14] Kuno, H. J., Trans. of IEEE ED- 11, 8 (1964).Google Scholar
[15] Heiman, F. P., Trans. IEEE ED- 14, (1967), p. 781.Google Scholar
[16] Zerbst, M., Z. Angew, Phys. Vol 22, (1966).Google Scholar
[17] Yamamoto, K., Kishino, S., Matsushita, Y. and Tlizuka, Appl. Phys. Lett. 36, 3, 195 (1980).Google Scholar
[18] Chakravarti, S. N., Garbarino, P. L. and Murty, K., Appl. Phys. Lett. 40 (7), 581 (1982).Google Scholar
[19] Miyagi, M., Wada, K., Osaka, J. and Inoue, N., Appl. Phys. Lett. 40 (8), 719 (1982).Google Scholar