Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-27T02:38:31.639Z Has data issue: false hasContentIssue false

Oxygen Aggregation Phenomena in Silicon

Published online by Cambridge University Press:  26 February 2011

Ronald C. Newman*
Affiliation:
J.J. Thomson Physical Laboratory, University of Reading, PO Box 220, Whiteknights, Reading, Berks, RG6 2AF, U.K.
Get access

Abstract

Oxygen precipitation in Czochralski silicon heated in the range 400–1050°C is reviewed. For T≥525° C, Si02 particles form at the normal diffusion rate and there is generation of self-interstitials. At the lower temperatures, the existence of the interfacial energy causes an apparent increase in the solid solubility as the agglomerates become very small: at 525° C they contain only an estimated 20–50 atoms. A critical analysis s then presented of possible oxygen aggregation reactions at even lower temperatures when thermal donors are generated. It is not yet possible to reconcile the kinetics of these two processes, even if self-interstitials and/or vacancy reactions are included. There is no evidence for enhanced diffusion of isolated oxygen atoms except as a transient process occurring during the relaxation of stress-induced dichroism. Oxygen aggregation at 450 ° C appears to be limited by the formation of dimers with an activation energy of 2.5eV, while thermal donors form with an activation energy of 1.7eV.

Type
Research Article
Copyright
Copyright © Materials Research Society 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Refrences

1. ASTM procedures F121-83 and F123-83 for oxygen and carbon in silicon.Google Scholar
2.Livingston, F.M., Messoloras, S., Newman, R.C., Pike, B.C., Stewart, R.J., Binns, M.J. and Wilkes, J.G., J.Phys.C:Solid St.Phys. 17, 6253 (1984).Google Scholar
3.Christian, J.W. in Physical Metallurgy, edited by Cahn, R.W. (North Holland:Amsterdam 1977) p506.Google Scholar
4.Mikkelsen, J.C. Jr, Appl.Phys.Lett. 40, 336 (1982); 41, 871 (1982).Google Scholar
5.Stavola, M., Patel, J.R., Kimerling, L.C. and Freeland, P.E., Appl.Phys. Lett. 42, 73 (1983).Google Scholar
6.Oates, A.S., Binns, M.J., Newman, R.C., Tucker, J.H., Wilkes, J.G. and Wilkinson, A., J.Phys.C:Solid St.Phys. 17, 5695 (1984).Google Scholar
7.Newman, R.C., Tucker, J.H. and Livingston, F.M., J.Phys.C:Solid St.Phys. 16, L151 (1983).Google Scholar
8.Newman, R.C., Claybourn, M., Kinder, S.H., Messosloras, S., Oates, A.S. and Stewart, R.J., Semiconductor Silicon 1986, Proc. 5th Int. Symp. Silicon Materials and Technology, ed. Huff, H.R., Abe, T. and Kolbesen, B. (Pennington:The Electrochem. Soc.) p766.Google Scholar
9.Messoloras, S., Newman, R.C., Stewart, R.J. and Tucker, J.H., Semicond.Sci. Technol. 2, 14 (1987).Google Scholar
10.Newman, R.C., J.Phys.C:Solid St.Phys. 18, L967 (1985).Google Scholar
11.Tan, T.Y., Kleinhenz, R. and Schneider, C.P. in Oxygen, Carbon, Hydrogen and Nitrogen in Crystalline Silicon, edited by Mikkelsen, J.C. Jr, Pearton, S.J., Corbett, J.W. and Pennycook, S.J. (Mater.Res.Soc.Proc. 59, Pittsburgh, PA 1986) pp 195204.Google Scholar
12.Stavola, M. in Oxygen, Carbon. Hydrogen and Nitrogen in Crystalline Silicon edited by Mikkelsen, J.C. Jr, Pearton, S.J., Corbett, J.W. and Pennycook, S.J. (Mater.Res.Soc.Proc. 59, Pittsburgh PA 1986) pp 78.Google Scholar
13.Kaiser, W., Frisch, H.L. and Reiss, H., Phys.Rev. 112, 1546 (1958).Google Scholar
14.Ourmazd, A., Schröter, W. and Bourret, A., J.Appl.Phys. 56, 1670 (1984).Google Scholar
15Bourret, A. in Defects in Semiconductors, edited by Kimerling, L.C. and Parsey, J.M. Jr (AIME:Warrendale PA 1985) vol.149 pp 129146.Google Scholar
16.Gosele, U. and Tan, T.Y., Appl.Phys.A 28, 79 (1982).Google Scholar
17.Snyder, L., Corbett, J.C., Deak, P. and Wu, R. in Defects in Electronic Materials, these proceedings.Google Scholar
18.Newman, R.C. in Oxygen, Carbon. Hydrogen and Nitrogen in Crystalline Silicon edited by Penneycook, S.J. (Mater.Res.Soc.Proc. 59, Pittsburgh PA 1986) pp 205–6.Google Scholar
19.Patrick, W., Hearn, E., Westdorp, W. and Bohg, A., J.Appl.Phys. 50, 7156 (1979).Google Scholar
20.Wada, K., Inoue, N. and Kohra, K., J.Cryst.Growth 49, 749, (1980): K. Wada, H. Nakanishi, T. Takaoko and N. Inoue, J.Cryst.Growth 57, 537 (1982).Google Scholar
21.Bourret, A., Thibault-Desseaux, J. and Seidman, D.N., J.Appl.Phys. 55, 825 (1984).Google Scholar
22.Bergholz, W., Hutchison, J.C. and Pirouz, P., J.Appl.Phys. 58, 3419 (1985).Google Scholar
23.Ham, F.S., J.Phys.Chem. Solids 6, 335, (1958).Google Scholar
24.Mikkelsen, J.C. Jr in Oxygen, Carbon, Hydrogen and Nitrogen in Crystalline Silicon, edited by Mikkelsen, J.C. JrPearton, S.J., Corbett, J.W. and Pennycook, S.J. (Mater.Res.Soc.Proc. 59, Pittsburgh PA 1986) pp 1930.Google Scholar
25.Bullough, R. and Newman, R.C., Rep.Prog.Phys. 33, 101 (1970).Google Scholar
26.Gosele, U., in Oxygen Carbon, Hydrogen and Nitrogen in Crystalline Silicon, edited by Mikkelsen, J.C. Jr, Pearton, S.J., Corbett, J.W. and Pennycook, S.J. (Mater.Res.Soc.Proc. 59, Pittsburgh PA 1986) pp419432.Google Scholar
27.Hillert, M. in Lectures on the Theory of Phase Transformation edited by Aaronson, H.I. (New York:Am. nst. of Min.Met. and Petroleum Eng. 1975) pl.Google Scholar
28.Bourret, A. in Microscopy of Semiconducting Materials 1986, (Inst.Phys. Conf.Ser. 87, 1987).Google Scholar
29.Oates, A.S., Newman, R.C., Tucker, J.H., Davies, G. and Lightowlers, E.C. in Oxygen, Carbon, Hydrogen and Nitrogen in Crystalline Silicon, edited by Mikkelsen, J.C. Jr, Pearton, S.J., Corbett, J.W. and Pennycook, S.J. (Mater.Res.Soc.Proc. 59, Pittsburgh PA 1986) pp 5965.Google Scholar
30.Davies, G., Lightowlers, E.C., Newman, R.C. and Oates, A.S., Semicond. Sci.Technol. 2, 524 (1987).Google Scholar
31.Newman, R.C., Tipping, A.K. and Tucker, J.H., J.Phys.C:Solid St.Phys. 18, L861 (1985).Google Scholar
32.Tipping, A.K., Newman, R.C., Newton, D.C. and Tucker, J.H.in Defects in Semiconductors, edited by Badeleben, H.J.von (Materials Science Forum 10–12, 1986) pp 887–92.Google Scholar
33.Trombetta, J.M. and Watkins, G.D.Appl.Phys.Lett. 51, 1103 (1987).Google Scholar
34.Bean, A.R. and Newman, R.C., J.Phys.Chem.Solids 33, 255 (1972).Google Scholar
35.Newman, R.C., Oates, A.S. and Livingston, F.M., J.Phys.C:Solid St.Phys. 16, L667 (1983).Google Scholar
36.Michel, J., Niklas, J.R. and Spaeth, J.-M. in Oxygen. Carbon, Hydrogen and Nitrogen in Crystalline Silicon, edited by Mikkelsen, J.C. Jr, Pearton, S.J., Corbett, J.W. and Pennycook, S.J. (Mater.Res.Soc.Proc. 59, Pittsburgh (1986) pp 111137.Google Scholar
37.Claybourn, M. and Newman, R.C., unpublished work.Google Scholar
38.Stein, H., Hahn, S.K., Shatas, S.C., J.Appl.Phys. 59, 3495 (1986).Google Scholar
39.Markevich, V.P., Makarenko, L.F. and Murin, L.I., Phys.Stat.Sol. (a) 97, K173 (1986).Google Scholar
40.Claybourn, M. and Newman, R.C., Appl.Phys.Lett., in the pressGoogle Scholar
41.Mathiot, D., in Defects in Electronic Materials, these proceedings.Google Scholar
42.van Wezep, D.A., Gregorkiewicz, T., Th.Bekman, H.H.P. and Ammerlaan, C.A.J. in Defects in Semiconductors, edited by von Bardeleben, H.J., Materials Sci.Forum 10–12, 1986 pp 10091014.Google Scholar