Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-27T02:22:39.515Z Has data issue: false hasContentIssue false

Oxidized Single-Walled Carbon Nanotubes: Removal of Carbonaceous Functionalized Material by Washing with Solvents or Base

Published online by Cambridge University Press:  12 July 2011

Elisa Del Canto
Affiliation:
School of Chemistry / Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN), University of Dublin, Trinity College, Dublin 2, Ireland
Kevin Flavin
Affiliation:
School of Chemistry / Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN), University of Dublin, Trinity College, Dublin 2, Ireland
Dania Movia
Affiliation:
School of Chemistry / Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN), University of Dublin, Trinity College, Dublin 2, Ireland
Silvia Giordani*
Affiliation:
School of Chemistry / Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN), University of Dublin, Trinity College, Dublin 2, Ireland
Get access

Abstract

Oxidized single-walled carbon nanotubes (SWNTs) have been prepared following a widely reported two-step purification/oxidation procedure in the presence or absence of a treatment with base (NaOH). The oxidized nanotube samples washed with solvents or base appear close to identical with respect to both appearance and properties. Efficient removal of both metal and carbonaceous impurities and introduction of –COOH groups on the nanotube surface have been demonstrated by AFM, Raman and FTIR spectroscopy. Furthermore, persistence of optical properties was confirmed using UV-vis/NIR absorption and NIR photoluminescence spectroscopies.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Itkis, M. E., Niyogi, S., Meng, M. E., Hamon, M. A., Hu, H. and Haddon, R. C., Nano Lett 2(2), 155159 (2002).Google Scholar
2. Singh, P., Campidelli, S., Giordani, S., Bonifazi, D., Bianco, A. and Prato, M., Chem Soc Rev 38, 22142230 (2009).Google Scholar
3. Bianco, A., Kostarelos, K., Partidos, C. D. and Prato, M., Chem Comm(5), 571577 (2005).Google Scholar
4. Niyogi, S., Hamon, M. A., Hu, H., Zhao, B., Bhowmik, P., Sen, R., Itkis, M. E. and Haddon, R. C., Acc Chem Res 35(12), 11051113 (2002).Google Scholar
5. Hu, H., Zhao, B., Itkis, M. E. and Haddon, R. C., J Phys Chem B 107(50), 1383813842 (2003).Google Scholar
6. Dillon, A. C., Gennett, T., Jones, K. M., Alleman, J. L., Parilla, P. A. and Heben, M. J., Adv Mater 11(16), 13541358 (1999).Google Scholar
7. Tasis, D., Tagmatarchis, N., Bianco, A. and Prato, M., Chem Rev 106(3), 11051136 (2006).Google Scholar
8. Bonifazi, D., Nacci, C., Marega, R., Campidelli, S., Ceballos, G., Modesti, S., Meneghetti, M. and Prato, M., Nano Lett 6(7), 14081414 (2006).Google Scholar
9. Movia, D., Del Canto, E. and Giordani, S., J Phys Chem C 114(43), 1840718413 (2010).Google Scholar
10. Giordani, S., Colomer, J.F., Cattaruzza, F., Alfonsi, J., Meneghetti, M., Prato, M. and Bonifazi, D., Carbon 47, 578588 (2009).Google Scholar
11. Del Canto, E., Flavin, K., Natali, M., Perova, T. and Giordani, S., Carbon 48, 28152824 (2010).Google Scholar
12. Salzmann, C. G., Llewellyn, S. A., Tobias, G., Ward, M. A. H., Huh, Y. and Green, M. L. H., Adv Mater 19(6), 883887 (2007).Google Scholar
13. Shao, L., Tobias, G., Salzmann, C. G., Ballesteros, B., Hong, S. Y., Crossley, A., Davis, B. G. and Green, M. L. H., Chem Comm(47), 50905092 (2007).Google Scholar
14. Del Canto, E., Flavin, K., Movia, D., Navio, C., Bittencourt, C. and Giordani, S., Chem Mater 23(1), 6774 (2011).Google Scholar