Hostname: page-component-7bb8b95d7b-cx56b Total loading time: 0 Render date: 2024-10-06T00:32:40.961Z Has data issue: false hasContentIssue false

Oxide Formation on the Bulk Metallic Glass Zr46.75Ti8.25Cu7.5Ni10Be27.5

Published online by Cambridge University Press:  10 February 2011

M. Kiene
Affiliation:
Lehrstuhl für Materialverbunde, Technische Fakultät der CAU Kiel, Kaiserstr. 2, 24143 Kiel, Germany
T. Strunskus
Affiliation:
Lehrstuhl für Materialverbunde, Technische Fakultät der CAU Kiel, Kaiserstr. 2, 24143 Kiel, Germany
G. Hasse
Affiliation:
Lehrstuhl für Materialverbunde, Technische Fakultät der CAU Kiel, Kaiserstr. 2, 24143 Kiel, Germany
F. Faupel
Affiliation:
Lehrstuhl für Materialverbunde, Technische Fakultät der CAU Kiel, Kaiserstr. 2, 24143 Kiel, Germany
Get access

Abstract

In this investigation depth profiling by Ar+ ion sputtering in combination with x-ray photoelectron spectroscopy was used to determine the thickness and the chemical composition of the oxide layers formed on the bulk metallic glass Zr46.75Tig8.25Cu7.5Ni10Be27.5 (V4) under different preparation conditions. The thickness of the oxide layer was in the range between 4 nm and 30 nm for samples oxidized in air at room temperature and annealed in air at 573 K for 15 hours, respectively. The oxide layers showed an enrichment of Be at the outermost surface followed by a Be, Zr and Ti rich phase. Cu and Ni are depleted within the whole oxide layer. BeO, ZrO2 and various Ti oxides were detected in the oxide layer, whereas Cu and Ni occurred only in a non-oxidized zerovalent state. Our data indicate that the oxidation is controlled by the inward and outward diffusion of the metallic components.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Birchenall, C.E., Oxidation of Alloys, American Society for Metals, Metals Park, OH, 1970, Chap. 13.Google Scholar
2. Asami, K., Kimura, H. M., Hashimoto, K., and Masumoto, T., Mater. Trans. JIM 36, 988 (1995).Google Scholar
3. Schneider, S., Sun, X., Nicolet, M.-A., and Johnson, W. L. in Science and Technology of Rapid Solidification and Processing, edited by Otooni, M. A. (Kluwer Academic Publishers, NL 1995), p. 317326.Google Scholar
4. Sun, X., Schneider, S., Geyer, U., Johnson, W. L., and Nicolet, M.-A., J. Mater. Res. 11, 2738 (1996).Google Scholar
5. Peker, A. and Johnson, W.L., Appl. Phys. Lett. 63, 2342 (1993).Google Scholar
6. Ehmler, H., Heesemann, A., Rätzke, K., Faupel, F., and Geyer, U., Phys. Rev. Lett. 80, 4919 (1998).Google Scholar
7. Tanuma, S., Powell, C.J. and Penn, D. R., Surf. Interface Anal. 17, p. 911 (1991).Google Scholar
8. Bryan, S. (unpublished results).Google Scholar