Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-23T15:27:36.010Z Has data issue: false hasContentIssue false

Oxide Film Aging on Alloy 22 in Halide Containing Solutions

Published online by Cambridge University Press:  19 October 2011

Martín A. Rodríguez
Affiliation:
[email protected], Comisión Nacional de Energía Atómica, Dept. Materiales, Av. Gral. Paz 1499, Villa Maipú, 1650, Argentina
Raúl B. Rebak
Affiliation:
[email protected], Lawrence Livermore National Laboratory, 7000 East Ave, L-631, Livermore, CA, 94550-9698, United States
Ricardo M. Carranza
Affiliation:
[email protected], Comisión Nacional de Energía Atómica, Dept. Materiales, Av. Gral. Paz 1499, Villa Maipú, 1650, Argentina
Get access

Abstract

Passive and corrosion behaviors of Alloy 22 in chloride and fluoride containing solutions, changing the heat treatment of the alloy, the halide concentration and the pH of the solutions at 90°C, was investigated. The study was implemented using electrochemical techniques, which included open circuit potential monitoring over time, potentiodynamic polarization and electro-chemical impedance spectroscopy (EIS) measurements carried out at open circuit and at passiv-ity potentials. Corrosion rates obtained by EIS measurements after 24 h immersion in naturally aerated solutions were below 0.5 m/year. The corrosion rates were practically independent of solution pH, alloy heat treatment and halide ion nature and concentration. EIS low frequency resistance values increased with applied potential in the passive domain and with polarization time in pH 6 - 1M NaCl at 90ºC. This effect was attributed to an increase in the oxide film thick-ness and oxide film aging. High frequency capacitance measurements indicated that passive ox-ide on Alloy 22 presented a double n-type/p-type semiconductor behavior in the passive potential range.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Gordon, G. M., Corrosion 58, 811825 (2002).Google Scholar
2. Rebak, R. B., Estill, J. C., Symp. Proc. Sci. Basis for Nuclear Waste Management XXVI, R., Finch and D., Bullen, Eds. (Mater. Res. Soc., 757, Warrendale, PA, 2003) pp.713721.Google Scholar
3. Koch, G. H., MTI Publication 41, Mat. Tech. Inst., of the Chemical Process Industries Inc., Columbus, Ohio, Published by NACE International, (1995).Google Scholar
4. Koch, G. H., Thompson, N. G., Means, J. L, EPRI Report CS-4374, Palo Alto, CA (1986).Google Scholar
5. Koch, G. H., Kistler, G. W., Mirich, W., EPRI Report CS-5476, Palo Alto, CA (1987).Google Scholar
6. Meck, N. S., Crook, P., Rebak, R. B. in Corr. Sci., A Retrospective and Current Status in Honor of R. P. Frankenthal, PV 2002–13 (The Electrochemical Society, Pennington, NJ, 2002) pp.355368.Google Scholar
7. Carranza, R. M., Rodríguez, M. A., Rebak, R. B., in CORROSION 2006 (NACE International paper 626, Houston, TX, 2006).Google Scholar
8. Raghavan, M., Berkowitz, B. J., Scanlon, J. C., Met. Trans. 13A, 979 (1982).Google Scholar
9. Tawancy, H. M., J. Mater. Sci., 31, 3929 (1996).Google Scholar
10. Hodge, F. G., Ahluwalia, H. S., Proc. 12th Int. Corrosion Congress (NACE International, Houston, TX, 1993) 5B, pp.4031.Google Scholar
11. Annual Book of ASTM Standards, Volume 03.02 (West Conshohocken, PA 2001).Google Scholar
12. Rodríguez, M. A., Carranza, R. M., Rebak, R. B., Metall. Trans. A 36/5, 11791185 (2005).Google Scholar
13. Rodríguez, M. A., Carranza, R. M., Rebak, R. B., in CORROSION 2004 (NACE International paper 700, Houston, TX, 2004).Google Scholar
14. Priyantha, N., Jayaweera, P., Macdonald, D. D., Sun, A., J. Electroanal. Chem. 572, 409 (2004).Google Scholar
15. Young, L., Anodic Oxide Films (Academic Press, New York, NY, 1961).Google Scholar
16. Macdonald, D. D., Sun, A., Priyantha, N., Jayaweera, P., J. Electroanal. Chem. 572, 421431 (2004).Google Scholar
17. Ferreira, M. G. S., Hakiki, N. E., Goodlet, G., Faty, S., Simões, A. M. P., Da Cunha Belo, M., Electrochim. Acta 46, 37673776 (2001).Google Scholar
18. Hakiki, N. E., Da Cunha Belo, M., Simões, A. M. P., Ferreira, M. G. S., J.Electrochem. Soc. 145/11, 38213828 (1998).Google Scholar
19. Da Cunha Belo, M., Hakiki, N. E., Ferreira, M. G. S., Electrochim. Acta 44, 24732481 (1999).Google Scholar
20. Macdonald, D. D., McKubre, M. C. H., in Impedance Spectroscopy, Theory, Experiment, and applications, E., Barsoukov, Macdonald, J. R. eds. (JW & Sons, NJ, 2005) pp.343.Google Scholar
21. Macdonald, D. D., Pure Appl. Chem. 71, 951986 (1999).Google Scholar
22. MacDougall, B. R., in Proc. Int. Works. on Long-Term Passive Behavior, Sagüés, A. A., Di Bella, C. A. W., eds. (U. S. Nuc. Waste Tech. Rev. Board, Virginia, VA, 2001) pp.4954.Google Scholar
23. Wong, L. L., Fix, D. V., Estill, J. C., McCright, R. D., Rebak, R. B., Symposium Proceedings in Scientific Basis for Nuclear Waste Management XXVI, R., Finch and D., Bullen, Eds. (Mater. Res. Soc., 757, Warrendale, PA, 2003) pp.735741.Google Scholar