Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-29T07:49:05.289Z Has data issue: false hasContentIssue false

Oxide Epitaxial Lift-Off (OELO)

Published online by Cambridge University Press:  15 February 2011

M. M. Eddy
Affiliation:
Superconductor Technologies, Inc., 460-F Ward Drive, Santa Barbara, CA 93111
R. Hanson
Affiliation:
Superconductor Technologies, Inc., 460-F Ward Drive, Santa Barbara, CA 93111
M. R. Rao
Affiliation:
Superconductor Technologies, Inc., 460-F Ward Drive, Santa Barbara, CA 93111
B. Zuck
Affiliation:
Superconductor Technologies, Inc., 460-F Ward Drive, Santa Barbara, CA 93111
J. S. Speck
Affiliation:
University of California at Santa Barbara, Dept of Materials, Santa Barbara, CA 93106
E. J. Tarsa
Affiliation:
University of California at Santa Barbara, Dept of Materials, Santa Barbara, CA 93106
Get access

Abstract

Epitaxially grown oxides of both SrTiO3 (STO) and YBa2Cu3O7-δ (YBCO) have been removed from their growth substrate and transferred for integration into other circuits (microwave devices) and onto other substrate material (glass). The enabling element in the separation process is the high selectivity of etching between YBCO and other oxide materials. Thus, a thin layer of YBCO is used as the sacrificial layer in the structure, allowing rapid etchant ingress under the device structures and separation from the growth substrate. Initial demonstrations of microwave device tuning using a lifted-off STO layer is detailed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Eddy, M.M., Sun, J.Z., Hammond, R.B., Drabeck, L., Ferreira, I.B., Holczer, K., Gruner, G.. J. Appl. Phys. 70, p. 496 (1991).Google Scholar
2. Burns, M.J., de la Houssaye, P.R., Russell, S.D., Garcia, G.A., Clayton, S.R., Ruby, W.S., Lee, L.P.. Appl. Phys. Lett., 63, p1282 (1993).Google Scholar
3. Wolf, S.A., Strom, U., Culbertson, J.C., Sol. St. Tech., p187, April (1990)Google Scholar
4. Antognazza, L., Berkowitz, S.J., Geballe, T.H., Char, K. Phys. Rev. B, 51, p8560 (1995)Google Scholar
5. Hiratani, M., Imagawa, K., Takagi, K.. Jpn. J. Appl. Phys. 34, p254 (1995).Google Scholar
6. Ramesh, R., Gilchrist, H., Sands, T., Keramidas, V.G., Haakenaasen, R., Fork, D.K.. Appl. Phys. Lett. 63, p3592 (1993)Google Scholar
7. Hirai, T., Goto, T., Matsuhashi, H., Tanimoto, S., Tarui, Y.. Jpn. J. Appl. Phys. 32, p4078 (1993).Google Scholar
8. Shimizu, M., Katayama, T., Sugiyama, M., Shiosaka, T.. Jpn. J. Appl. Phys. 32, p4074 (1993).Google Scholar
9. Xiong, G.C., Li, Q., Ju, H.L., Greene, R.L., Venkatesan, T.. Appl. Phys. Lett. 66, p1689 (1995).Google Scholar
10. Harendt, C., Hunt, C.E., Appel, W., Graf, H-G., Hofflinger, B., Penteker, E.. J. Electr. Mat. 20, p267 (1991).Google Scholar
11. De Boeck, J., Borghs, G.. J. Cryst. Growth. 127, p85 (1993).Google Scholar
12. Yablonovitch, E., Hwang, D.M., Gmitter, T.J., Florez, L.T., Harbison, J.P.. Appl. Phys. Lett. 56, p. 2419(1990).Google Scholar
13. Ersen, A., Schnitzer, I., Yablonovitch, E., Gmitter, T.. Sol. St. Electr. 36, p1731 (1993).Google Scholar
14. Tarsa, E.J., Hachfeld, E.A., Quinlan, F.T., Speck, J.S., Eddy, M.M.. Appl. Phys. Lett., 68, p490 (1996).Google Scholar
15. Galt, D., Price, J.C., Beall, J.A., Ono, R.H.. 63, p3078 (1993).Google Scholar
16. Findikoglu, A.T., Doughty, C., Anlage, S.M., Li, Q., Xi, X.X., Venkatesan, T.. 63, p3215 (1993).Google Scholar