Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-25T17:53:25.287Z Has data issue: false hasContentIssue false

Oxide Barriers to the Formation of Refractory Silicides

Published online by Cambridge University Press:  15 February 2011

D. J. Silversmith
Affiliation:
Lincoln Laboratory, Massachusetts Institute of Technology, Lexington, MA 02173 (U.S.A.)
D. D. Rathman
Affiliation:
Lincoln Laboratory, Massachusetts Institute of Technology, Lexington, MA 02173 (U.S.A.)
R. W. Mountain
Affiliation:
Lincoln Laboratory, Massachusetts Institute of Technology, Lexington, MA 02173 (U.S.A.)
Get access

Abstract

An investigation of the formation of refractory metal (tungsten, molybdenum and tantalum) silicides by reaction of the metal with crystalline and polycrystalline silicon at temperatures above 900°C indicates that WSi2 formation can be inhibited by certain processing techniques. These techniques utilize the growth of an SiO2 diffusion barrier about 20 Å thick on crystalline silicon and the deposition of tungsten films in vacuum ambients that will ensure oxygen incorporation (P ≥ 2 × 10−7 Torr). The reactivity of vacuum-deposited tungsten films results in the formation of an isolating oxide between the deposited silicon and tungsten films and the maintenance of the stability of the SiO2 diffusion barrier between tungsten films and a crystalline silicon substrate. This barrier is effective up to 1050°C in hydrogen ambients containing 15–20 ppm H2O. These procedures, however, are ineffective in preventing the formation of MoSi2 or TaSi2 at or above 900°C. A possible explanation for these results is that the tungsten film contains some level of oxygen due to the gettering of residual oxygen in the vacuum. In addition, the outgassing of the silicon source may enhance the level of oxygen at the evaporated W-Si interface. When the composite layer is annealed at high temperatures in a hydrogen ambient, the oxygen diffuses readily out of the bulk of the tungsten film to the interface, probably forming Sio2 which is more stable than WO3.The resulting thin SiO2 film has sufficient integrity to prevent silicon diffusion into the tungsten, thereby preventing WSi2 formation. This property of tungsten makes it inherently useful for buried-metal films in silicon devices.

Type
Research Article
Copyright
Copyright © Materials Research Society 1982

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Muraka, S. P., J. Vac. Sci. Technol., 17 (1980) 775.Google Scholar
2 Muraka, S. P., Fraser, D. B., Sinna, A. K. and Levenstein, H. J., IEEEJ. Solid-State Circuits, 15 (1980) 474.Google Scholar
3 Zirinsky, S., Hammer, W., D'Hearle, F. and Baglin, J., Appl. Phys. Lett., 33 (1978) 76.Google Scholar
4 Nowichi, R. S., Solid State Technol., 23 (1980) 95.Google Scholar
5 Tsaur, B.-Y., Silversmith, D. J., Mountain, R. W., Hung, L. S., Lau, S. S. and Sheng, T. T., J. Appl. Phys., 52 (1981) 5243.Google Scholar
6 Locker, L. D. and Capio, C. D., J. Appl. Phys., 44 (1973) 4366.Google Scholar
6a Goodnick, S. M., Fathipour, M., Ellsworth, D. L. and Wilmsen, C. W., J. Vac. Sci. Technol., 18 (1981) 949.Google Scholar
7 Chang, C. C. and Quintana, G., J. Electron Spectrosc., 2 (1976) 363.Google Scholar
8 Bevolo, A. J., Campisi, G. J., Shanks, H. R. and Schmidt, F. A., J. Appl. Phys., 51 (1980) 5390.CrossRefGoogle Scholar
9 Bevolo, A. J., Schmidt, F. A., Shanks, H. R. and Campisi, G. J., J. Vac. Sci. Technol., 16 (1979) 13.CrossRefGoogle Scholar
10 Pretorius, R., Harris, J. M. and Nicolet, M.-A., Solid-State Electron., 21 (1978) 667.Google Scholar
11 Handbook of Chemistry and Physics, Chemical Rubber Co., Cleveland, OH, 58th edn., 1977.Google Scholar
12 Berkowitz-Mattuck, J. B., Rossetti, R. W. and Lee, D. W., Metall. Trans., 1 (1970) 479.Google Scholar
12a Mochizuki, T. and Kashiwagi, M., J. Electrochem. Soc., 127 (1980) 1128.Google Scholar
12b Yanagisawa, S. and Fukuyama, T., J. Electrochem. Soc., 127 (1980) 1150.CrossRefGoogle Scholar
13 Capelletti, P., Mori, F., Pignatel, G., Ferla, G., Nava, F. and Ottaviani, G., in Huff, H. R. and Kriegler, R. J. (eds.), Semiconductor Silicon-1981, Electrochemical Society, Princeton, NJ, 1981, p. 608.Google Scholar