Article contents
Oxidative Catalytic Decomposition of Toxic Gases Using Hydroxyapatite and Fluorhydroxyapatite
Published online by Cambridge University Press: 15 February 2011
Abstract
An oxidative catalytic route for the decomposition of nerve gases was investigated using hydroxyapatite (HA, chemical composition Ca10(PO4)6(OH)2) and its partially fluorinated analog fluorhydroxyapatite (FHA, Ca10(PO4)6Fx(OH)2−x). Samples were prepared with surface areas ranging from 34 to 238 m2/g to study surface area effects; 1.2 wt. % platinum was deposited on one substrate to investigate the effect of a transition metal on activity and selectivity. Reaction studies were performed using dimethyl methylphosphonate (DMMP), a nerve gas simulant, in a stream of 80 percent nitrogen and 20 percent oxygen at 573 K and atmospheric pressure. High surface area FHA samples showed an increase in the "protection period" (period of 100% conversion) with increasing fluorine substitution; such an increase was not seen for low surface area FHA samples. In the absence of platinum, the reaction products were methanol and dimethyl ether; with platinum, CO2 was also obtained.
- Type
- Research Article
- Information
- Copyright
- Copyright © Materials Research Society 1995
References
REFERENCES
- 3
- Cited by