Hostname: page-component-78c5997874-4rdpn Total loading time: 0 Render date: 2024-11-19T07:18:25.800Z Has data issue: false hasContentIssue false

Oxidation Modelling for SiC

Published online by Cambridge University Press:  10 February 2011

N. G. Wright
Affiliation:
Dept. Of Electrical and Electronic Engineering, The University of Newcastle upon Tyne, Newcastle UK, NEI 7RU, [email protected]
C. M. Johnson
Affiliation:
Dept. Of Electrical and Electronic Engineering, The University of Newcastle upon Tyne, Newcastle UK, NEI 7RU, [email protected]
A. G. O'neill
Affiliation:
Dept. Of Electrical and Electronic Engineering, The University of Newcastle upon Tyne, Newcastle UK, NEI 7RU, [email protected]
Get access

Abstract

A simple mechanistic model of the oxidation of SiC is presented and analysed using Monte- Carlo simulation techniques. The model explains the observed anisotropic oxidation rate of SiC in terms of the effect of weakening/strengthening of Si-C bonds arising from the ongoing incorporation of highly electronegative oxygen atoms into the crystal lattice. The extraction of key process metrics (such as oxide thickness, interface roughness and oxide defect density) from the Monte-Carlo simulations is discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Cooper, J.A. Jr, Phys. Stat. Sol. 162, p. 305 (1997)10.1002/1521-396X(199707)162:1<305::AID-PSSA305>3.0.CO;2-73.0.CO;2-7>Google Scholar
2. Alok, D., McLarty, P. K. and Baliga, B. J., Appl. Phys Lett, 64, p. 2845 (194)10.1063/1.111443Google Scholar
3. Ueno, K., Phys. Stat. Sol. 162, p. 290 (1997)10.1002/1521-396X(199707)162:1<299::AID-PSSA299>3.0.CO;2-X3.0.CO;2-X>Google Scholar
4. Rhys, A., Singh, N. and Cameron, M., J. Electrochem. Soc 142, p. 1318 (1995)10.1149/1.2044170Google Scholar
5. Wright, N.G., Johnson, C. M. and O'Neill, A.G., Mat. Sci. Eng. B56 (1999).Google Scholar
6. Pauling, L., “The Nature of the Chemical Bond” 3rded., Cornell University Press, New York 1960 Google Scholar
7. Herrman, H.J. in “The Monte-Carlo Method in Condensed Matter Physics” (e.d. K., Binder), Springer 1995 Google Scholar
8 Bhanot, G., Rep Prog Phys 51, p. 429 (1988)10.1088/0034-4885/51/3/003Google Scholar
9. Afanasev, V. F., Bassler, M., Pensl, G. and Schulz, M., Phys. Stat. Sol. 162, p. 321 (1997)10.1002/1521-396X(199707)162:1<321::AID-PSSA321>3.0.CO;2-F3.0.CO;2-F>Google Scholar
10 Onda, S., Kumar, R. and Hara, K., Phys. Stat. Sol. 162, p. 369 (1997)10.1002/1521-396X(199707)162:1<369::AID-PSSA369>3.0.CO;2-43.0.CO;2-4>Google Scholar