Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-28T23:12:58.892Z Has data issue: false hasContentIssue false

Oxidation Dynamics of Aluminum Nanorods

Published online by Cambridge University Press:  07 February 2013

Ying Li
Affiliation:
Collaboratory for Advanced Computation and SimulationsDepartments of Chemical Engineering and Materials Science, Physics and Astronomy, and Computer ScienceUniversity of Southern California, Los Angeles, CA 90089-0242, U.S.A.
Aiichiro Nakano
Affiliation:
Collaboratory for Advanced Computation and SimulationsDepartments of Chemical Engineering and Materials Science, Physics and Astronomy, and Computer ScienceUniversity of Southern California, Los Angeles, CA 90089-0242, U.S.A.
Rajiv K. Kalia
Affiliation:
Collaboratory for Advanced Computation and SimulationsDepartments of Chemical Engineering and Materials Science, Physics and Astronomy, and Computer ScienceUniversity of Southern California, Los Angeles, CA 90089-0242, U.S.A.
Priya Vashishta
Affiliation:
Collaboratory for Advanced Computation and SimulationsDepartments of Chemical Engineering and Materials Science, Physics and Astronomy, and Computer ScienceUniversity of Southern California, Los Angeles, CA 90089-0242, U.S.A.
Get access

Abstract

Understanding of combustion of metastable intermolecular composites, including the burning of aluminum nanoparticles, is critical for broad applications such as propulsion, explosives and other pyrotechnics. Aluminum nanorods (Al-NR) with oxidized shells are good candidates for stable fuel-oxidizer combinations. We investigate the oxidation dynamics of Al-NRs of different diameters (26, 36 and 46 nm) but the same aspect ratio using molecular dynamics simulations. We heat one end of the Al-NR to 1100 K and then study the oxidation reaction at the interface of the alumina shell and the Al core. We find: (1) heat produced by oxidation causes the melting of nanorods; (2) heat release is accelerated due to Al-O reaction at outside-shell and core-shell interfaces; and (3) the larger surface-to-volume ratio causes faster burning of thinner nanorods. We present results for the oxidation speed of nanorods.

Type
Articles
Copyright
Copyright © Materials Research Society 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Wang, S.F., Yang, Y.Q., Sun, Z.Y., Dlott, D.D., Chem Phys Lett, 368189–194 (2003).Google Scholar
Mench, M.M., Kuo, K.K., Yeh, C.L., Lu, Y.C., Combust Sci Technol, 135 269292 (1998).10.1080/00102209808924161CrossRefGoogle Scholar
Levitas, V.I., Combust Flame, 156 543546 (2009).10.1016/j.combustflame.2008.11.006CrossRefGoogle Scholar
Rashkovskii, S.A., Combust Explo Shock Waves, 43 654663 (2007).10.1007/s10573-007-0088-0CrossRefGoogle Scholar
Il'in, A.P., Popenko, E.M., Gromov, A.A., Shamina, Y.Y., Tikhonov, D.V., Combust Explo Shock Waves, 38 665669 (2002).CrossRefGoogle Scholar
Grigorev, V.G., Zarko, V.E., Kutsenogii, K.P., Combust Explo Shock Waves, 17 245251 (1981).10.1007/BF00751292CrossRefGoogle Scholar
Karasev, V.V., Onischuk, A.A., Glotov, O.G., Baklanov, A.M., Maryasov, A.G., Zarko, V.E., Panfilov, V.N., Levykin, A.I., Sabelfeld, K.K., Combust Flame, 138 4054 (2004).10.1016/j.combustflame.2004.04.001CrossRefGoogle Scholar
Gallier, S., Sibe, F., Orlandi, O., P Combust Inst, 33 19491956 (2011).10.1016/j.proci.2010.05.046CrossRefGoogle Scholar
Zhu, P., Li, J.C.M., Liu, C.T., Mat Sci Eng a-Struct, 240 532539 (1997).10.1016/S0921-5093(97)00627-8CrossRefGoogle Scholar
Malchi, J.Y., Yetter, R.A., Son, S.F., Risha, G.A., P Combust Inst, 31 26172624 (2007).10.1016/j.proci.2006.08.046CrossRefGoogle Scholar
Subramaniam, S., Hasan, S., Bhattacharya, S., Gao, Y., Apperson, S., Hossain, M., Shende, R.V., Gangopadhyay, S., Redner, P., Kapoor, D., Nicolich, S., Mater Res Soc Symp P, 896 914 (2006).Google Scholar
Weismiller, M.R., Malchi, J.Y., Lee, J.G., Yetter, R.A., Foley, T.J., P Combust Inst, 33 19891996 (2011).10.1016/j.proci.2010.06.104CrossRefGoogle Scholar
Pivkina, A., Ulyanova, P., Frolov, Y., Zavyalov, S., Schoonman, J., Propell Explos Pyrot, 29 3948 (2004).10.1002/prep.200400025CrossRefGoogle Scholar
Bezmelnitsyn, A., Thiruvengadathan, R., Barizuddin, S., Tappmeyer, D., Apperson, S., Gangopadhyay, K., Gangopadhyay, S., Redner, P., Donadio, M., Kapoor, D., Nicolich, S., Propell Explos Pyrot, 35 384394 (2010).10.1002/prep.200800077CrossRefGoogle Scholar
Hao, F., Sonnefraud, Y., Van Dorpe, P., Maier, S.A., Halas, N.J., Nordlander, P., Nano Lett, 8 39833988 (2008).10.1021/nl802509rCrossRefGoogle Scholar
Pomfret, M.B., Brown, D.J., Epshteyn, A., Purdy, A.P., Owrutsky, J.C., Chem Mater, 20 59455947 (2008).10.1021/cm801983wCrossRefGoogle Scholar
Li, C.S., Ji, W.Q., Chen, J., Tao, Z.L., Chem Mater, 19 58125814 (2007).10.1021/cm7018795CrossRefGoogle Scholar
Lu, Y.B., Tohmyoh, H., Saka, M., Pan, H.L., Optoelectron Adv Mat, 5 12191222 (2011).Google Scholar
Yang, S.M., Jang, S.G., Choi, D.G., Kim, S., Yu, H.K., Small, 2 458475 (2006).10.1002/smll.200500390CrossRefGoogle Scholar
Vashishta, P., Nakano, A., Kalia, R.K., Ebbsjo, I., Mat Sci Eng B-Solid, 37 5671 (1996).10.1016/0921-5107(95)01458-6CrossRefGoogle Scholar
Cohen, J.M., Voter, A.F., Surf Sci, 313 439447 (1994).10.1016/0039-6028(94)90063-9CrossRefGoogle Scholar
Wang, W.Q., Clark, R., Nakano, A., Kalia, R.K., Vashishta, P., Appl Phys Lett, 95 261901 (2009).10.1063/1.3268436CrossRefGoogle Scholar
Wang, W.Q., Clark, R., Nakano, A., Kalia, R.K., Vashishta, P., Appl Phys Lett, 96 181906 (2010).10.1063/1.3425888CrossRefGoogle Scholar
Bockmon, B.S., Pantoya, M.L., Son, S.F., Asay, B.W., Mang, J.T., J Appl Phys, 98 064903 (2005).10.1063/1.2058175CrossRefGoogle Scholar