Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-29T07:22:35.239Z Has data issue: false hasContentIssue false

The Oxidation Behavior of Silicon Nanocrystals in the Submonolayer Region

Published online by Cambridge University Press:  10 February 2011

J. Diener
Affiliation:
Department of Physics, University of California, Materials Sciences Division, Lawrence Berkeley Laboratory, Berkeley, CA 94720–7300, USA
M. Ben-Chorin
Affiliation:
Weizmann Institute of Science, Department of Chemical Physics, Rehovot, Israel
D. I. Kovalev
Affiliation:
Technische Universitdt Mfinchen, Physik-Department E16, D-85 747 Garching, Germany
G. Polisski
Affiliation:
Technische Universitdt Mfinchen, Physik-Department E16, D-85 747 Garching, Germany
F. Koch
Affiliation:
Technische Universitdt Mfinchen, Physik-Department E16, D-85 747 Garching, Germany
Get access

Abstract

Fourier transform infrared spectroscopy is used to determine the time evolution of oxygen incorporation onto the surface of silicon nanocrystals. Oxygen concentrations up to one monolayer are investigated. The temporal progress of surface oxidation of Si nanocrystals in porous silicon shows a linear dependence on the square root of the oxidation time. This is similar to the oxidation of bulk Si and mesoporous silicon.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Cullis, A. G., Canham, L. T. and Calcott, P. D. J., J. Appl. Phys. 82, 909 (1997) and references there in.Google Scholar
[2] Ito, T. and Hiraki, A., J. Lumin. 57, 331 (1993).Google Scholar
[3] Kato, Y., Ito, T. and Hiraki, A., Jpn. J. Appl. Phys. 27, L1406 (1988).Google Scholar
[4] Fuchs, H. D., Stutzmann, M., Brand, M. S., Rosenbauer, M. and Weber, J., Phys. Rev. B 48, 8172 (1993).Google Scholar
[5] Lukovsky, G., Yang, J., Chao, S. S., Thyler, J. E. and Czubatyj, W., Phys. Rev. B 28, 3225 (1983).Google Scholar
[6] Brodsky, M. H., Cardona, M., and Cuomo, J., Phys. Rev. B 16, 3556 (1977).Google Scholar
[7] Bruggeman, D. A. G., Ann. d. Phys. 5, 636 (1935).Google Scholar
[8] Born, and Wolf, , Principles of Optics, Pergamon Press, Oxford (1975).Google Scholar
[9] Nikolov, A., Petrova-Koch, V. and Koch, F. in Microcrystalline and nanocrystalline semiconductors, edited by Collins, R. W., Tsai, C. C., Hirose, M., Koch, F. and Bruce, L. (Mater. Res. Soc. Proc. 358, Pitsburg 1995) pp. 423429.Google Scholar
[10] Tischler, M. A. and Collins, R. T., Solid State Commun. 84, 819 (1992).Google Scholar
[11] Bullis, W. M., in Semiconductors and Semimetals (Oxygen in Silicon), 42, 95 (1996).Google Scholar
[12] Baker, J. A., Solid-State Electronics 13, 1431 (1970).Google Scholar
[13] Sze, S. M., Semiconductor Devices, J. Wiley & Sons, New York (1985).Google Scholar