Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-27T01:47:55.563Z Has data issue: false hasContentIssue false

Oxidation and Carbon Contamination in GaAs (100) Wet Treatments

Published online by Cambridge University Press:  10 February 2011

R. F. Elbahnasawy
Affiliation:
Department of Physics, National University of Ireland, University College, Cork, Ireland.
J. G. McInerney
Affiliation:
Department of Physics, National University of Ireland, University College, Cork, Ireland.
G. Hughes
Affiliation:
Department of Physics, Dublin City University, Ireland.
Get access

Abstract

Oxidation and carbon contamination of n-type GaAs (100) surfaces have been investigated by x-ray photoelectron spectroscopy (XPS), Auger electron spectroscopy (AES) and secondary ion mass spectroscopy (SIMS) for a variety of cleaning and etching pretreatment procedures prior to immersion in either (NH4)2S, Na2S aqueous solutions or S2Cl2 solution in dichloromethane. The study has shown that sulfur passivation removes surface oxide and minimize carbon contamination for surfaces treated in (NH4)2S and S2Cl2 solutions. A significant oxygen and carbon contamination in the anodic passivation of GaAs (100) in (NH4)2Sx aqueous solution have been quantitatively measured. In addition, pretreatment in basic solutions have shown minimal oxygen and carbon level in comparison with the acidic solutions. Surface pretreatment carried out ex-situ has shown a higher risk of surface contamination prior to sulfur passivation.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Wang, Y., Darici, Y., and Holloway, P. H., J. Appl. Phys. 71(6), 2746 (1992).Google Scholar
2 Wang, X. S., Self, K. W., Maboudian, R., Huang, C., Bressler-Hill, V., and Weinberg, W. H., J. Vac. Sci. Technol. A11 (4), 1089 (1993).Google Scholar
3 Rochter, R., Hartnagel, H. L., J. Electrochem. Soc. 137(9), 2879 (1990).Google Scholar
4 Lee, J., Wei, L., Tanigawa, S., Oigawa, H and Nannichi, Y., Appl. Phys. Left. 58(11), 1167 (1991).Google Scholar
5 Richter, R. and Hartnagel, H. L., J. Electrochem. Soc. 137(9), 2879 (1990).Google Scholar
6 Jianhong, Z., Xiaoyuan, H., Xunmin, D., Xiaofeng, J., Ping, C., Chinese Physics 12(3), 753 (1992).Google Scholar
7 Cai, W. Z., Li, Z. S., Su, R.Z., Dong, G. S., Huang, D. M., Ding, X. M., Hou, X. Y. and Wang, X., Appl. Phys. Lett. 64(25), 3425 (1994).Google Scholar
8 Kang, M., Sa, S., Park, H., Suh, K. and Lee, J., Materials Science and Engineering B46, 65 (1997).Google Scholar
9 Carpenter, M. S., Melloch, M. R., Lundstrom, M. S. and Jobin, S. P., Appl. Phys. Lett. 52(25), 2157 (1988).Google Scholar
10 Sandroff, C. J., Hegde, M. S., Farrow, L. A., Chang, C. C., and Harbison, J. P., Appl. Phys. Lett. 54(4), 362 (1989).Google Scholar
11 Massies, J. and Contour, J. P., J. Appl. Phys. 58(2), 806 (1985).Google Scholar
12 Nannichi, Y., Fan, Jia-Fa, Oigawa, H. and Koma, A., Japanese Journal of Applied Physics 27(12), L2367 (1988).Google Scholar
13 Spicer, W. E., Liliental-Weber, Z., Newman, N., Kendelewicz, T., Cao, R., McCants, C., Mahowald, P., Miyano, K., Lindau, I., J. Vac. Sci. & Technol. B6, 1245(1988 ).Google Scholar
14 Oigawa, H., Shigekawa, H., Nannichi, Y., Material Science Forum 185188,191 (1995).Google Scholar