Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-27T01:46:56.407Z Has data issue: false hasContentIssue false

Overview of Chemical Modeling of Nuclear Waste Glass Dissolution

Published online by Cambridge University Press:  28 February 2011

William L. Bourcier*
Affiliation:
Lawrence Livermore National Laboratory, L-2199, Livermore, CA 94550
Get access

Abstract

Glass dissolution takes place through metal leaching and hydration of the glass surface accompanied by development of alteration layers of varying crystallinity. The reaction which controls the long-term glass dissolution rate appears to be surface layer dissolution. This reaction is reversible because the buildup of dissolved species in solution slows the dissolution rate due to a decreased dissolution affinity. Glass dissolution rates are therefore highly dependent on silica concentrations in solution because silica is the major component of the alteration layer.

Chemical modeling of glass dissolution using reaction path computer codes has successfully been applied to short term experimental tests and used to predict long-term repository performance. Current problems and limitations of the models include a poorly defined long-term glass dissolution mechanism, the use of model parameters determined from the same experiments that the model is used to predict, and the lack of sufficient validation of key assumptions in the modeling approach. Work is in progress that addresses these issues.

Type
Research Article
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Doremus, R. H., J. Non-cryst. Solids. 19, 137 (1975).CrossRefGoogle Scholar
2. Doremus, R. H., J. Non-cryst. Solids. 55, 143 (1983).Google Scholar
3. Wallace, Richard M. and Wicks, George G., Mat. Res. Soc. Symp. Proc. 15 23 (1983).Google Scholar
4. Harvey, K. B., Litke, C. D., and Boase, C. A., Physics and Chem. of Glasses. 27, 15 (1986).Google Scholar
5. Banba, T., Murakami, T., and Kimura, H., Mat. Res. Soc. Symp. Proc. 44, 113 (1985).Google Scholar
6. Chambre, P. L., Kang, C. H., Lee, W. W.-L., and Pigford, T. H., Mat. Res. Soc. Symp. Proc. 112, 85 (1988).Google Scholar
7. Abrajano, T. A., Bates, J. K., Woodland, A. B., Bradley, J. P., and Bourcier, W. L., Clays and Clay Minerals, in press, (1991).Google Scholar
8. Smets, B. M. J., and Lommen, T. P. A., Physics and Chem. of Glasses. 23, 83 (1982).Google Scholar
9. Bunker, B. C., Tallant, D. R., Kirkpatrick, R. J., and Turner, G. L., Physics and Chem. of Glasses. 31, (1990).Google Scholar
10. Greaves, G. N., J. Noncryst. Solids. 120, 108 (1990).Google Scholar
11. Bunker, B. C., Tallant, D. R., Headley, T. J., Turner, G. L., and Kirkpatrick, R. J., Physics and Chem. of Glasses. 29, 106 (1988).Google Scholar
12. Petit, J.-C., Delia Mea, G., Dran, J.-C., Magonthier, M.-C., Mando, P. A., and Paccagnella, A., Geochim. et Cosmochim. Acta. 54, 1941 (1990).Google Scholar
13. Lutze, W., in Radioactive Waste Forms For the Future, edited by Lutze, W. and Ewing, R. C. (North Holland, New York, 1988), p. 1.Google Scholar
14. Murakami, T., Ewing, R. C., and Bunker, B. C., Mat. Res. Soc. Symp. Proc. 112, 737 (1988).CrossRefGoogle Scholar
15. Pederson, L. R., Buckwalter, C. Q., McVay, G. L., and Riddle, B. L., Mat. Res. Soc. Symp. Proc. 15, 4 (1983).Google Scholar
16. Chick, L. A., and Pederson, L. R., Mat. Res. Soc. Symp. Proc. 26, 635 (1984).Google Scholar
17. Grambow, B., Glastechn. Ber. 56K, Bd. 1, p. 566, (1983).Google Scholar
18. Grambow, B., Nuclear Waste Glass Dissolution: Mechanism. Model, and Application. JSS Project Report 8702, 102 p. (1987).Google Scholar
19. Crovisier, J. L., Honnorez, J., and Eberhart, J. P., Geochim. et Cosmochim. Acta. 51. 2977 (1987).Google Scholar
20. Bourcier, W. L., Peiffer, D. W., Knauss, K. G., McKeegan, K. D. and Smith, D. K., Mat. Res. Soc. Symp. Proc. 176, 209 (1990).Google Scholar
21. Advocat, T., Crovisier, J. L., Fritz, B., and Vernaz, E., Mat. Res. Soc. Symp. Proc. 176. 241 (1990).Google Scholar
22. Mouche, E., and Vernaz, E.. Mat. Res. Soc. Symp. Proc. 112, 703 (1988).CrossRefGoogle Scholar
23. Knauss, K., Bourcier, W. L., McKeegan, K. D., Merzbacher, C. I., Nguyen, S. N., Ryerson, F. J., Smith, D. K., Weed, H. C., and Newton, L., Mat. Res. Soc. Symp. Proc. 176, 371 (1990).Google Scholar
24. Pederson, L. R., Physics and Chem. of Glasses. 28, 17 (1987).Google Scholar
25. Isard, J. O. and Muller, W., Physics and Chem. of Glasses. 27, 55 (1986).Google Scholar
26. Feng, X., Pegg, I. L., Barkatt, A., Macedo, P. B., Cucinell, S. J. and Lai, S., Nuclear Technology. 72, 239 (1990).Google Scholar
27. Lanford, W. A., Davis, K., Lamarche, P., Laursen, T., and Groleau, R., J. Noncryst. Solids. 33, 249 (1979).Google Scholar
28. Abrajano, T. A., and Bates, J. K., Mat. Res. Soc. Symp. Proc. 84, 533 (1987).Google Scholar
29. Petit, J.-C., Dran, J.-C., Paccagnella, A., and Della Mea, G., Earth and Planetary Science Letters. 93, 292 (1989).Google Scholar
30. Knauss, K. G. and Wolery, T. J., Geochim. et Cosmochim. Acta. 50, 2481 (1986).Google Scholar
31. Smets, B. M. J., Tholen, M. G. W., and Lommen, T. P. A., J. Noncryst. Solids. 65, 319 (1984).Google Scholar
32. Wood, B. J., and Walther, J. V., Science. 222, 413 (1983).Google Scholar
33. Murphy, W. M., and Helgeson, H. C., Am. J. Science. 289. 17 (1989).Google Scholar
34. Garofalini, S. H., J. Noncryst. Solids. 120, 1 (1990).Google Scholar
35. Dran, J.-C., Langevin, Y., Doorhyee, E., and Petit, J.-C., Mat. Res. Soc. Symp. Proc. 84, 559 (1987).Google Scholar
36. Lee, Cheng-Tsui, Ph.D. thesis, University of Florida, 1986.Google Scholar
37. Casey, W. H., and Bunker, B., Leaching of mineral and glass surfaces during dissolution, in Mineral-Water Interface Geochemistry, edited by Hochella, M and White, A. (Mineralogical Society of America, 1990) pp. 397424.Google Scholar
38. Buckwalter, C. Q., and Pederson, L. R., J. Am. Cer. Soc. 65, 431 (1982).Google Scholar
39. Velbel, M. A., Influence of surface area, surface characteristics, and solution composition on feldspar weathering rates, in Amer. Chem. Soc. Sympo. 323. p 615. (1986).Google Scholar
40. Ewing, R. C., Mat. Res. Soc. Symp. Proc. 84, 703 (1987).Google Scholar
41. Grambow, B., and Strachan, D. M., A comparison of the performance of nuclear waste glasses by modeling. Pacific Northwest Laboratories Report PNL-6698. 59 p. (1988).Google Scholar