Hostname: page-component-78c5997874-lj6df Total loading time: 0 Render date: 2024-11-17T17:26:59.495Z Has data issue: false hasContentIssue false

Origins of the Gap States in Polycrystalline Silicon: Tight-Binding Calculations of Twist Boundaries

Published online by Cambridge University Press:  03 September 2012

M. Kohyama
Affiliation:
Glass and Ceramic Material Department, Government Industrial Research Institute, Osaka, 1–8–31, Midorigaoka, Ikeda, Osaka 563, Japan.
S. Kose
Affiliation:
Glass and Ceramic Material Department, Government Industrial Research Institute, Osaka, 1–8–31, Midorigaoka, Ikeda, Osaka 563, Japan.
R. Yamamoto
Affiliation:
Research Center of Advanced Science and Technology, University of Tokyo, 4–6–1, Komaba, Meguro-ku, Tokyo 153, Japan.
Get access

Abstract

The atomic and electronic structures of the twist boundaries Σ (=3 (011), Σ=7 (111) and Σ=5 (001)) in Si have been calculated by using the transferable SETB method coupled with the supercell technique. The twist boundaries in Si contain larger structural disorder or more defects and larger interfacial energies than tilt grain boundaries. Several kinds of structural disorder or defects have been found to generate characteristic electronic states inside the gap. The present structural disorder or defects and the gap states are the candidates of the origins of the observed band-tails or mid-gap states in polycrystalline Si as well as those In amorphous Si.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Polycrystalline Semiconductors, edited by Möller, H. J., Strunk, H. P. and Werner, J. H. (Springer, Berlin, 1989).CrossRefGoogle Scholar
[2] Polycrystalline Semiconductors II, edited by Werner, J. H. and Strunk, H. P. (Springer, Berlin, 1991).CrossRefGoogle Scholar
[3] Thomson, R. E. and Chadi, D. J., Phys. Rev. B29, 889 (1984).CrossRefGoogle Scholar
[4] DiVincenzo, D. P., Alerhand, O. L., Schlüter, M. and Wilkins, J. W., Phys. Rev. Lett. 56, 1925 (1986).Google Scholar
[5] Paxton, A. T. and Sutton, A. P., J. Phys. C21, L481 (1988).Google Scholar
[6] Kohyama, M., Yamamoto, R., Watanabe, Y., Ebata, Y. and Kinoshita, M., J. Phys. C21, L695 (1988).Google Scholar
[7] Tarnaw, E., Dallot, P., Bristowe, P. D., Joannopoulos, J. D., Francis, G. P. and Payne, M. C., Phys. Rev. B42, 3644 (1990).CrossRefGoogle Scholar
[8] Werner, J. and Peisl, M., Phys. Rev. B31, 6881 (1985).CrossRefGoogle Scholar
[9] Jousse, D., Delage, S. L. and Iyer, S. S., Phil. Mag. B63. 443 (1991).Google Scholar
[10] Sawada, S., Vacuum 41. 612 (1990).Google Scholar
[11] Kohyama, M., J. Phys.: Condens. Matter 3, 2193 (1991).Google Scholar
[12] Tomanek, D. and Schlüter, M. A., Phys. Rev. B36, 1208 (1987).Google Scholar
[13] Monkhorst, H. J. and Pack, J. D., Phys. Rev. B13, 5188 (1976).Google Scholar
[14] Pantelides, S. T., Phys. Rev. Lett. 57, 2979 (1986).Google Scholar
[15] Biswas, R., Wang, C. Z., Chan, C. T., Ho, K. M. and Soukoulis, C. M., Phys. Rev. Lett. 63, 1491 (1989).CrossRefGoogle Scholar