Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-25T17:47:03.796Z Has data issue: false hasContentIssue false

The Origins of High Spatial Resolution Secondary Electron Microscopy

Published online by Cambridge University Press:  15 February 2011

M. R. Scheinfein
Affiliation:
Department of Physics and Astronomy, Arizona State University, Tempe, AZ 85287-1504 Center for Solid State Science, Arizona State University, Tempe, AZ 85287-1704
J. S. Drucker
Affiliation:
Center for Solid State Science, Arizona State University, Tempe, AZ 85287-1704
J. Liu
Affiliation:
Center for Solid State Science, Arizona State University, Tempe, AZ 85287-1704
J. K. Weiss
Affiliation:
Center for Solid State Science, Arizona State University, Tempe, AZ 85287-1704
G. G. Hembree
Affiliation:
Department of Physics and Astronomy, Arizona State University, Tempe, AZ 85287-1504
J. M. Cowley
Affiliation:
Department of Physics and Astronomy, Arizona State University, Tempe, AZ 85287-1504 Center for Solid State Science, Arizona State University, Tempe, AZ 85287-1704
Get access

Abstract

The secondary electron generation process is studied in an ultra-high vacuum scanning transmission electron microscope using electron coincidence spectroscopy. Production pathways for secondary electrons are determined by analyzing coincidences between secondary electrons and individual excitation events. The ultimate spatial resolution available in scanning electron microscopy is limited by the delocalization of the secondary electron generation process. This delocalization is studied using momentum resolved coincidence electron spectroscopy. The fraction of secondary electrons resulting from localized excitations can explain the high spatial resolution observed in secondary electron microscopy images.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Homma, Y., Tomita, M., Hayashi, T., Surf. Sci. 258, 147 (1991).Google Scholar
2. Drucker, J. S., Krishnamurthy, M., Hembree, G.G., Ultramicr. 35, 323 (1991); J. S. Drucker, J. Appl. Phys., 70,.2806 (1991).CrossRefGoogle Scholar
3. Milne, R.H., Ultramicr. 27, 433 (1989).Google Scholar
4. Bleloch, A.L., Howie, A., Milne, R.H., Ultramicr. 31, 99 (1989).Google Scholar
5. Liu, J., Cowley, J.M., Scanning Micr. vol.2, 65 (1988); J. Lui, J.M. Cowley, Scanning Micr. vol.2, 1957 (1988).Google Scholar
6. Uchida, Y., Weinberg, G., Lempfuhl, G., Micr. Res. Tech. 20, 406 (1992).Google Scholar
7. Suszcynsky, D.M., Borovsky, J.E., Phys. Rev. A45(9), 6424 (1992); M. Rosier, W. Brauer, phys. stat. sol. (b) 104, 161 (1981); M. Rosler, W. Brauer, phys. stat. sol. (b) 104, 575 (1981); M. Rosier, W. Brauer, phys. stat. sol. (b) 148, 213 (1988); J. Schou, Scanning Micr. 2, 607 (1988); R. Bindi, H. Lateri, P. Rostaing, Scanning Micr. 1, 1475 (1987); V.E. Henrich, Phys. Rev. B7, 3512 (1973); R. Willis et. al, Phys. Rev. B9, 1926 (1974).Google Scholar
8. Bethe, H., Z. Phys. 76, 293 (1930); H. Bethe, in Handbuch der Physik, edited by. H. Geiger and K. Scheel (Springer, Berlin, 1933), Vol.24/1, p. 273; M. Inokuti, Rev. Mod. Phys. 43(3), 297 (1971).CrossRefGoogle Scholar
9. Ritchie, R.H., Howie, A., Echinique, P.P, Basbas, G.J., Ferrell, T.L., Ashley, J.C., Scanning Microsc. Suppl. 4, 45 (1990).Google Scholar
10. Everhart, T.E., Chung, M.S., J. Appl. Phys. 43(9), 3707 (1972); M.S. Chung, T.E. Everhart, Phys. Rev. B15(10), 4699 (1977);J.P. Ganachaud, M. Callier, Surf. Sci. 83, 498 (1979); J.P. Ganachaud, M. Callier, Surf. Sci. 83, 519 (1979).Google Scholar
11. Massignon, D., Pellerin, F., Fontaine, J.M., LeGressus, C., Ichinokawa, T., J. Appl. Phys. 51(1), 808 (1980).CrossRefGoogle Scholar
12. Voreades, D., Surf. Science, 60, 325 (1976).Google Scholar
13. Mullejans, H., Bleloch, A.L., Howie, A., McMullan, C., Inst. Phys. Conf,. Ser. No. 119(3), 117 (1991); H. Mullejans, Ph. D. Thesis, University of Cambridge, 1992.Google Scholar
14. Kruit, P., Shuman, H., Somlyo, A.P., Ultramicr. 13, 205 (1984);F.J. Pijper, P. Kruit, Phys. Rev. B44(17), 9192 (1991).Google Scholar
15. Hembree, G.G., Crozier, P.A., Drucker, J.S., Krishnamurthy, M., Venables, J.A., Cowley, J.M., Ultramicr. 31, 111 (1989).Google Scholar
16. A.J. Bleeker, Ph. D. Thesis Technische Universiteit Delft,, (1991); Bleeker, A., Kruit, P., Nucl. Instr. Meth. A298, 269 (1990); P. Kruit, J. A. Venables, Ultramicr. 25, 183 (1988);Google Scholar
17. Akimoto, T., Murai, I., Nakata, M., Ogawa, Y., Nucl. Instr. Meth. 184, 525 (1981); H. Jeremie, Nucl. Instr. Meth. A244, 587 (1986); G.F. Knoll, Radiation Detection and Measurement, 2nd Ed. (John Wiley and Sons, New York, New York, 1988) chaps. 4 and 17.Google Scholar
18. Scheinfein, M.R. and Drucker, Jeff, Phys. Rev. B (in press).Google Scholar
19. Raether, H., Plasmons and Intraband Electronic Transitions, Springer Tracts in Modern Physics, vol.88 (Springer Verlag, Berlin, 1982).Google Scholar
20. Chelikowsky, J.R., Cohen, M.L., Phys. Rev. B14(2), 556 (1976).Google Scholar
21. Sternglass, J., Phys. Rev. 108, 1 (1957).Google Scholar
22. Cailler, M., Ganachaud, J.-P., Scanning Micr. Supp. 4, 57 (1990); M. Cailler, J.-P. Ganachaud, Scanning Micr. Supp. 4, 81 (1990).Google Scholar
23. Ferrell, R.A., Phys. Rev. 101, 554 (1956).Google Scholar
24. Ritchie, R.H.,Howie, A., Philos. Mag. A58(5), 753 (1988); D. Ugarte, C. Colliex, P. Trebbia, Phys. Rev. B45(8), 4332 (1992); M.R. Scheinfein, Scanning Microsc. Suppl. 1, 161 (1987).Google Scholar
25. Imeson, D., Milne, R.H., Berger, S.D. and McMullan, D., Ultramicroscopy 17, 243 (1985); A. Howie and R.H. Milne, Ultramicroscopy 18, 427 (1985); M. Issacson, J. P. Langmore and H. Rose, Optik 41, 92 (1974).Google Scholar
26. Kunz, C., Z. Phys. 167, 53 (1962).CrossRefGoogle Scholar