Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-27T02:34:14.527Z Has data issue: false hasContentIssue false

Oriented Lead Zirconate Titanate thin Films: Characterization of Film Crystallization

Published online by Cambridge University Press:  21 February 2011

James A. Voigt
Affiliation:
Sandia National Laboratories, P.O. Box 5800, Albuquerque, NM 87185
B. A. Tuitle
Affiliation:
Sandia National Laboratories, P.O. Box 5800, Albuquerque, NM 87185
T. J. Headley
Affiliation:
Sandia National Laboratories, P.O. Box 5800, Albuquerque, NM 87185
M. O. Eatough
Affiliation:
Sandia National Laboratories, P.O. Box 5800, Albuquerque, NM 87185
D. L. Lamppa
Affiliation:
Sandia National Laboratories, P.O. Box 5800, Albuquerque, NM 87185
D. Goodnow
Affiliation:
Sandia National Laboratories, P.O. Box 5800, Albuquerque, NM 87185
Get access

Abstract

Through systematic variation of film processing temperature and time, we have characterized the pyrochlore to perovskite crystallization process of solution-derived PZT 20/80 thin films. The ≈3000 Å thick films were prepared by spin deposition using <100> single crystal MgO as the film substrate. By controlled rapid thermal processing, films at different stages in the perovskite crystallization process were prepared with the tetragonal PZT 20/80 phase being <100>/<001> oriented relative to the MgO surface. An activation energy for the conversion process of 326 kJ/mole was determined by use of an Arrhenius expression using rate constants found by application of the method of Avrami. The activation energy for formation of the PZT 20/80 perovskite phase of the solution-derived films compared favorably with that calculated from data by Kwok and Desu [1] for sputter-deposited 3500 Å thick PZT 55/45 films. The similarity in activation energies indicates that the energetics of the conversion process is not strongly dependent on the method used for film deposition.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Kwok, C. K. and Desu, S. B. in Ferroelectric Films, edited by Bhalla, A. S. and Nair, K. M. (Ceram. Trans. 25, Amer. Ceram. Soc., Westerville, OH, 1992) pp.8596.Google Scholar
2. (a) Ferroelectric Thin Films, edited by Myers, E. R. and Kingon, A. I. (Mater. Res. Soc. Proc. 200, Pittsburgh, PA, 1990); (b) Ferroelectric Thin Films II, edited by A. I.Kingon, E. R. Myers and B. A. Tuttle (see Ref. 2(a), 1992); and (c) Ferroelectric Films, see Ref. 1.Google Scholar
3. Chen, K. and Mackenzie, J. in Better Ceramics Through Chemistry IV, edited by Zelinsky, B. J. J., Brinker, C. J., Clark, D. E., and Ulrich, D. R. (Mater. Res. Soc. Proc. 180, Pittsburgh, PA, 1990) pp. 663668.Google Scholar
4. Rou, S. H., Graettinger, T. M., Chow, A. F., Soble, C. N. II, Lichenwalner, D. J., Auciello, O., and Kingon, A. I., see Ref. 2(b), pp. 8191; D. Barrow, C. V. R. Vasant Kumar, R. Pascual, and M. Sayer, ibid. pp. 113-122; C. Peng and S. B. Desu, ibid., pp. 335-344.Google Scholar
5. Chapin, L. N. and Myers, S. A., see Ref. 2(b), pp. 153–58.Google Scholar
6. Hsueh, C. C. and Mecartney, M. L., J. Mater. Res. 6, 2208 (1991).CrossRefGoogle Scholar
7. Tuttle, B. A., Headley, T. J., Bunker, B. C., Schwartz, R. W., Zender, T. J., Hernandez, C. L., Goodnow, D. C., Tissot, R. J., Michael, J., and Carim, A. H., J. Mater. Res. 7, 1876 (1992).Google Scholar
8. Kwok, C. K. and Desu, S. B., J. Mater. Res. 8, 339 (1993).Google Scholar
9. Schwartz, R. W., Assink, R. A., and Headley, T. J., see Ref. 2(b), pp. 245254.Google Scholar
10. Tuttle, B. A., Voigt, J. A., Goodnow, D. C., Lamppa, D. L., Headley, T. J., Eatough, M. O., Zender, G., Nasby, R. D., and Rodgers, S. M., J. Amer. Ceram. Soc. 76 (6), 1573 (1993).Google Scholar
11. Headley, T. J., Tuttle, B. A., and Voigt, J. A. (unpublished).Google Scholar
12. Schwartz, R. W., Bunker, B. C., Dimos, D., Assink, R. A., Tallant, D. R., Weinstock, I., and Haaland, D. M. in Proc. of 3rd Int. Symp. on Integrated Ferroelectrics, (1991) pp. 535–46.Google Scholar
13. Yi, G., Wu, Z., and Sayer, M., J. Appl. Phys. 64 (5), 2717 (1988).Google Scholar
14. Tuttle, B. A., Voigt, J. A., Garino, T. J., Goodnow, D. C., Schwartz, R. W., Lamppa, D. L., Headley, T. J., and Eatough, M. O. in Pro. of the 8th IEEE Int, Symp, on Appl, of Ferroelectrics, edited by Liu, M., Safari, A., Kingon, A. I., and Haertling, G. (WEEE, Piscataway, NJ, 1992) pp. 344–48.Google Scholar
15. Johnson, W. A. and Mehl, R. F., Trans. Metall. Soc. AIME, 135, 416 (1939).Google Scholar
16. Avrami, M., J Chem. Phys., 7 (12), 1103 (1939); 8 (2), 212 (1940); 9 (2) 177 (1941).Google Scholar
17. Exarhos, G. J. and Aloi, M., Thin Solid Films 193/194, 42 (1990).CrossRefGoogle Scholar
18. Exarhos, G. J. and Risen, W. M. Jr., J. Amer. Ceram. Soc. 57 (9), 401 (1974).Google Scholar
19. Shaikh, A. S. and Vest, G. M., J. Amer. Ceram. Soc. 69 (9), 682 (1986).Google Scholar
20. Rangantahan, S. and Heimendahl, M. Von, J. Mater. Sci., 16, 2401 (1981).Google Scholar
21. Edelman, F., Komen, Y., Iyer, S. S., Heydenreich, J., and Baither, D., Thin Solid Films, 222, 57 (1992).Google Scholar