Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-27T01:30:26.127Z Has data issue: false hasContentIssue false

Orientation-dependent Pattern Formation in a 1.5D Continuum Model of Curved Dislocations

Published online by Cambridge University Press:  27 February 2015

Stefan Sandfeld
Affiliation:
Institute for Materials Simulation (WW8), Friedrich-Alexander-University Erlangen-Nürnberg, Dr.-Mack-Str. 77, 90762 Fürth, Germany
Vanessa Verbeke
Affiliation:
Laboratoire d’Etude des Microstructures, UMR 104 CNRS-ONERA, Chatillon, France
Benoit Devincre
Affiliation:
Laboratoire d’Etude des Microstructures, UMR 104 CNRS-ONERA, Chatillon, France
Get access

Abstract

Dislocation pattern formation is a phenomenon where during significant plastic deformation dislocations organize themselves into (meta)stable structures. Modeling such systems is a non-trivial task, because the number of interacting dislocations is high, bringing discrete simulation models to their computational limits. Continuum models, although more efficient, generally do not contain sufficient information for a physically detailed representation of such systems. In this paper we show how a continuum dislocation dynamics theory can be used to model idealized pattern formation. Furthermore, we show how discrete dislocation dynamics (DD) simulations can be used to provide physical input for our continuum model.

Type
Articles
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Amodeo, J., Devincre, B., Carrez, P., and Cordier, P.. Mech. Mater., 71(0):6273, 4 2014.Google Scholar
Chen, Y. S., Choi, W., Papanikolaou, S., Bierbaum, M., and Sethna, J. P.. Int. J. Plasti., 46:94129, 2013.CrossRefGoogle Scholar
Devincre, B.. Philosophical Magazine, 93(13):235246, 2013.CrossRefGoogle Scholar
Devincre, B., Kubin, L., and Hoc, T.. Scripta Mater., 54:741746, 2006.CrossRefGoogle Scholar
Gomez-Garcia, D., Devincre, B., and Kubin, L.. Phys. Rev. Lett., 96, 2006.CrossRefGoogle Scholar
Groma, I. and Bako, B.. Phys. Rev. Lett., 84(7):14871490, 2000.CrossRefGoogle Scholar
Hoc, T., Devincre, B., and Kubin, L.. Deformation stage I of FCC crystals: Constitutive modelling. In Gundlach, C. et al. ., editor, Evolution of Deformation Microstructures in 3D, pages 4359, Roskilde, Denmark, 2004. Risoe National Laboratory.Google Scholar
Hochrainer, T., Zaiser, M., and Gumbsch, P.. Phil. Mag., 87(8-9):12611282, March 2007.CrossRefGoogle Scholar
Krӧner, E.. Kontinuumstheorie der Versetzungen und Eigenspannungen. Springer, 1958.CrossRefGoogle Scholar
LeSar, R.. Annu. Rev. Condens. Matter Phys., 5:375407, 2014.CrossRefGoogle Scholar
Madec, R., Devincre, B., and Kubin, L.. Scripta Materialia, 47:689695, 2002.CrossRefGoogle Scholar
Monavari, M., Zaiser, M., and Sandfeld, S.. Mater. Res. Soc. Symp. Proc., 1651, 2014.CrossRefGoogle Scholar
Mughrabi, H.. Materials Science and Engineering, 33(2):207223, 1978.CrossRefGoogle Scholar
Sandfeld, S., Hochrainer, T., Gumbsch, P., and Zaiser, M.. Phil. Mag., 90:36973728, 2010.CrossRefGoogle Scholar
Sandfeld, S., Hochrainer, T., Zaiser, M., and Gumbsch, P.. J. Mater. Res., 26(5), 2011.CrossRefGoogle Scholar
Sauzay, M. and Kubin, L. P.. Prog. Mater. Sci., 56(6, SI):725784, 2011.Google Scholar
Zaiser, M. and Sandfeld, S.. Modelling Simul. Mater. Sci. Eng., 22:065012, 2014 CrossRefGoogle Scholar