Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-27T02:32:38.340Z Has data issue: false hasContentIssue false

Orientational Dependence of Oscillatory Exchange Coupling

Published online by Cambridge University Press:  03 September 2012

M.T. Johnson
Affiliation:
Philips Research, P.O. Box 80000, 5600 JA Eindhoven, The Netherlands.
P.J.H. Bloemen
Affiliation:
Physics Department, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands.
R. Coehoorn
Affiliation:
Philips Research, P.O. Box 80000, 5600 JA Eindhoven, The Netherlands.
J.J. de Vries
Affiliation:
Physics Department, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands.
N.W.E. McGee
Affiliation:
Philips Research, P.O. Box 80000, 5600 JA Eindhoven, The Netherlands.
W. R. Jungblut
Affiliation:
Philips Research, P.O. Box 80000, 5600 JA Eindhoven, The Netherlands.
A. Reinders
Affiliation:
Philips Research, P.O. Box 80000, 5600 JA Eindhoven, The Netherlands.
J. aan de Stegge
Affiliation:
Philips Research, P.O. Box 80000, 5600 JA Eindhoven, The Netherlands.
Get access

Abstract

The role of the interlayer Fermi surface in driving oscillatory exchange coupling of ferromagnetic layers has been critically tested in a series of MBE-grown coherent epitaxial sandwiches prepared on single-crystal substrates. The wedge-shaped Cu (or Cu-based) interlayers have been modified in a number of different ways, achieving orientational, compositional and structural alteration of the Cu Fermi surface. Observed phenomena include multiperiodic coupling oscillations in both the ferromagnetically and antiferromagnetically coupled regions of (lOO) -oriented Co/Cu/Co samples, extended oscillatory periods across CuNi alloy interlayers, and extremely short-period oscillations in a bcc (100) Fe/Cu/Fe system. These phenomena are straightforwardly explained in terms of calculated Fermi surface variations.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Parkin, S. S. P., Bhadra, R., and Roche, K. P., Phys. Rev. Lett. 66, 2152 (1991).Google Scholar
[2] Mosca, D. H., Petroff, F., Fert, A., Schroeder, P. A., Pratt, W. P. Jr, and Loloee, R., J. Magn. Magn. Mater. 94, L1 (1991).Google Scholar
[3] Parkin, S. S. P., Phys. Rev. Lett. 67, 3598 (1991).Google Scholar
[4] Bennett, W. R., Schwarzacher, W., and Egelhoff, W. F. Jr, Phys. Rev. Lett. 65, 3169 (1990).Google Scholar
[5] Coehoom, R., Phys. Rev. B 44, 9331 (1991);Google Scholar
Chappert, C. and Renard, J. P., Europhys. Lett. 15, 553 (1991);Google Scholar
Deaven, D. M., Rokhsar, D. S., and Johnson, M., Phys. Rev. B 44, 5977 (1991).Google Scholar
[6] An orientational and structural dependence of the exchange coupling was also predicted from ab initio band structure calculations for a variety of systems containing Cu interlayers: see Herman, F., Sticht, J., and van Schilfgaarde, M., Mat. Res. Soc. Symp. Proc. 231, 195 (1992).Google Scholar
[7] Bruno, P. and Chappert, C., Phys. Rev. Lett. 67, 1602 (1991).Google Scholar
[8] Petroff, F., Barthélé, A., Mosca, D. H., Lottis, D. K., Fert, A., Schroeder, P. A., Pratt, W. P. Jr, Loloee, R., and Lequien, S., Phys. Rev. B 44, 5355 (1991).Google Scholar
[9] Edwards, D. M., Mathon, J., Muniz, R.B., and Phan, M.S., Phys. Rev. Lett. 67, 493, (1991).Google Scholar
[10] Johnson, M. T., Purcell, S. T., McGee, N. W. E., Coehoorn, R., aan de Stegge, J., and Hoving, W., Phys. Rev. Lett. 68, 2688 (1992).Google Scholar
[11] Bloemen, P. J. H., van Dalen, R., de Jonge, W. J. M., Johnson, M. T., and aan de Stegge, J., Short period oscillation of the interlayer exchange coupling in the ferromagnetic regime in Co/Cu/Co (100), Proceedings of the MMM conference, Houston, 1992 (to be published in J. Appl. Phys.).Google Scholar
[12] Johnson, M. T., Coehoorn, R., de Vries, J. J., McGee, N.W. E. aan de Stegge, J., and Bloemen, P. J. H., Phys. Rev. Lett. 69, 969 (1992).Google Scholar
[13] Bloemen, P. J. H., Johnson, M. T., aan de Stegge, J., and de Jonge, W. J. M., J. Magn. Magn. Mater 116, L315 (1992).Google Scholar
[14] Parkin, S. S. P. and Mauri, D., Phys. Rev. B 44, 7131 (1991).Google Scholar
[15] Fert, A., Bartélé, A., Etienne, P., Lequin, S., Laloee, R., Lottis, D. K., Mosca, D. H., Petroff, F., Pratt, W. P., and Schroeder, P. A., J. Magn. Magn. Mater. 104–107, 1712 (1992).Google Scholar
[16] Bloemen, P. J. H., de Jonge, W. J. M., and Donkersloot, H. C., Determination of the ferromagnetic coupling across Pd by Magneto-atomic engineering, J. Appl. Phys. (accepted).Google Scholar
[17] Fuβ, A., Demokritov, S., Grünberg, P., and Zinn, W., J. Magn. Magn. Mater. 103, L221 (1992).Google Scholar
[18] Unguris, J., Celotta, R. J., and Pierce, D. T., Oscillatory Magnetic coupling in Fe/Ag/Fe (100) sandwich structures, (submitted).Google Scholar
[19] Okuno, S. N., Inomata, K., and Saito, Y., 16th Annual Conference on magnetics in Japan, digest 7pC-7, p 52 (1992).Google Scholar
[20] Egelhoff, W. F. Jr, and Kief, M. T., Phys. Rev. B 45, 7795 (1992).Google Scholar
[21] Schreyer, A., Brohl, K., Ankner, J. F., Zeidler, Th., Bodeker, P., Metoki, N., Majkrzak, C. F., and Zabel, H., Oscillatory exchange coupling in Co/Cu (111) superlattices, (submitted).Google Scholar
[22] Bruno, P. and Chappert, C., Phys. Rev. B 46, 261 (1992),Google Scholar
Bruno, P., J. Magn. Magn. Mater. 116, 213 (1992).Google Scholar
[23] den Broeder, F.J.A., Janssen, E., Hoving, W., and Zeper, W.B., IEEE Trans. Mag. 28, 2760 (1992).Google Scholar
[24] Jungblut, R. et al. (unpublished)Google Scholar
[25] Heinrich, B., Celiński, Z., Cochran, J. F., Muir, W. B., Rudd, J., Zhong, Q. M., Arrott, A. S., Myrtle, K., and Kirschner, J., Phys. Rev. Lett. 64, 673 (1990).Google Scholar
[26] Herman, F., Sticht, J., and van Schilfgaarde, M., J. Appl. Phys. 69, 4783 (1991).Google Scholar