Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-27T02:38:33.417Z Has data issue: false hasContentIssue false

Organometallic Vapor Phase Epitaxial Growth of ZnGeAs2 and (ZnGeAs2)xGe1−x on GaAs

Published online by Cambridge University Press:  26 February 2011

G. S. Solomon
Affiliation:
Research Triangle Institute, Research Triangle Park, North Carolina 27709-2194
J. B. Posthill
Affiliation:
Research Triangle Institute, Research Triangle Park, North Carolina 27709-2194
M. L. Timmons
Affiliation:
Research Triangle Institute, Research Triangle Park, North Carolina 27709-2194
Get access

Abstract

Epitaxial single crystal (001) chalcopyrite-structure ZnGeAs2 and single crystal (100) zinc blende-structure (ZnGeAs2)xGe1−x alloys have been grown by organometallic vapor phase epitaxy on (100) GaAs. Selected area electron diffraction was used to determine the crystal structure for several Zn:Ge molar flow ratios. Bulk chemical composition was determined by electron microprobe and correlated to crystal lattice constants obtained from x-ray diffraction. Due to the lattice mismatch between chalcopyrite-structure ZnGeAs2 and the GaAs substrate, the epitaxy is elastically strained, compressing the a-lattice constant and elongating the c-lattice constant. Optical absorption and transmission spectroscopy indicate the zinc-blende-structure material has an indirect band gap of approximately 0.6 eV, whereas the chalcopyrite ZnGeAs2 has a direct band gap of 1.15 eV. Secondary ion mass spectroscopy reveals significant Zn diffusion into the GaAs substrate if the Zn:Ge molar flow ratio exceeds the ratio required for stoichiometric chalcopyrite-structure crystal growth.

Type
Research Article
Copyright
Copyright © Materials Research Society 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Shay, J.L. and Wernick, J.H., Ternary Chalcopyrite Semiconductors: Growth, Electronic Properties, and Applications, Pergamon, Oxford (1975).Google Scholar
2. Miller, A., MacKinnon, A. and Weaire, D., Sol. State Phys. 36, 119 (1981).Google Scholar
3. Wagner, S., Topica in Applied Physics; Electroluminescence, 17, 171, Springer-Verlag, Berlin (1977).Google Scholar
4. Sinclair, C.K., J. De Physique C2, 669 (2-1985).Google Scholar
5. Boyd, G.D., Gandrud, W.B. and Buehler, E., Appl. Phys. Lett. 18, 446 (1971).CrossRefGoogle Scholar
6. Xing, G.C., Bachmann, K.J., Solomon, G.S., Posthill, J.B. and Timmons, M.L., Jour. Cryst. Growth, 94, 381 (1989).Google Scholar
7. Averkieva, G.K., Goryunova, N.A., Prochukhan, V.D. and Serginov, M., Soviet Phys. Doklady. 15, 386 (1970).Google Scholar
8. Wolfe, C.M., Muller, M.W., Davis, G.A. and Hsien, S. Julie, II–IV–V2 Chalcopyrites for High Speed Devices, Final Technical Report No. WU/SRL-59457–5 (1982).Google Scholar
9. Shah, S.I. and Greene, J.E., J. Cryst. Growth 68, 537 (1984).CrossRefGoogle Scholar
10. Chelluri, B., Chang, T.Y., Ourmazd, A., Dayem, A.H., Zyskind, J.L. and Srivastava, A., J. Cryst. Growth 81, 530 (1987).Google Scholar
11. Xing, G.C., Bachmann, K.J., Posthill, J.B., Solomon, G.S. and Timmons, M.L., Proc. Symp. Heteroepitaxial Approaches in Semiconductors: Lattice Mismatch and Its Consequences, ECS Fall Meeting, Chicago, Il (1988).Google Scholar
12. Solomon, G.S., Timmons, M.L. and Posthill, J.B., J. Appl. Phys. 63, 1952 (1989).CrossRefGoogle Scholar