Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-19T04:49:52.555Z Has data issue: false hasContentIssue false

Organic/Inorganic Hybrid Silicate Materials for Optical Applications; Highly Fluorinated Hybrid Glasses Doped with (Erbium-ions/CdSe nanoparticles) for Laser Amplifier Material

Published online by Cambridge University Press:  01 February 2011

Kyung M. Choi
Affiliation:
Bell Laboratories, Lucent Technologies, Murray Hill, New Jersey, U. S. A.
John A. Rogers
Affiliation:
Bell Laboratories, Lucent Technologies, Murray Hill, New Jersey, U. S. A.
Get access

Extract

A new family of organic/inorganic hybrid silicate materials, bridged polysilsesquioxanes, was designed and synthesized through a molecular-level mixing technique. Since hybrid materials in the molecular-composite level, whose domain sizes are in the nanometer-scale, and whose constituents often lose individual identities and thus create new properties, we obtained a set of improved properties from those organically modified glasses. By modifying the Si-O-Si polymeric network, in this study, we produced controllable, porous hybrid glasses for facile and uniform doping of various ions, metals or semiconductor particles. By taking advantage of void volume created in those molecularly modified silicate systems, novel optical materials with designed properties can thus be achieved. Via a chemical strategy, we designed hexylene- or fluoroalkylene-bridged hybrid glasses doped with both Er+3 ions and CdSe nano-particles for the development of new laser amplifier materials. In photoluminescence experiments, a significant enhancement in fluorescence intensity at 1540 nm has been obtained from the fluoroalkylene-bridged glass. The presence of CdSe nano-particles, by virtue of their low phonon energy, also appears to significantly influence the nature of the surrounding environment of Er+3 ions in those modified silicate systems, resulting in the increased fluorescence intensity.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. (a) Agaskar, P. A., Day, V. W., Klemperer, W. G., J. Am. Chem. Soc. 109, 5554 (1987).Google Scholar
(b) Schmidt, H., “Sol-Gel Science and Technology”; World Scientific: Singapore, p. 432 (1989).Google Scholar
(c) Novak, B. M., Adv. Mater. 5, 422 (1993).Google Scholar
(d) Haruvy, Y., Webber, S. E., Chem. Mater. 3, 501 (1991).Google Scholar
2. (a) Corriu, R. J. P., Moreau, J. J. E., Thepot, P., Man, M. W. C., Chorro, C., Lere-Porte, J. P., Sauvajol, J. L., Chem. Mater. 6, 640 (1994).Google Scholar
(b) Baney, R. H., Itoh, M., Sakakibara, A., Suzuki, I., Chem. Rev. 95, 1409 (1995).Google Scholar
3. (a) Choi, K. M., Shea, K. J., Chem. Mater. 5, 1067 (1993).Google Scholar
(b) Choi, K. M., Shea, K. J., K. J., J. Am. Chem. Soc. 116, 9052 (1994).Google Scholar
4. (a) Choi, K.M., Shea, K.J., K. J., J. Phys. Chem. 98, 3207 (1994).Google Scholar
(b) Choi, K. M., Shea, K. J., K. J., J. Phys. Chem. 99, 4720 (1995).Google Scholar
5. (a) Shea, K. J., Loy, D. A., Chem. Rev. 95, 1431 (1995).Google Scholar
(b) Shea, K. J., Loy, D. A., Webster, O. W., J. Am. Chem. Soc. 114, 6700 (1992).Google Scholar
(c) Shea, K. J., Loy, D. A., MRS Bulletin 26, 368 (2001).Google Scholar
6. Choi, K.M., Shea, K.J., “Photonic Polymer SystemsFundamentals, Methods, and Applications” edited by Wise, D.L. et al., World Scientific Publishing Co. Pte. Ltd., 49 (1998).Google Scholar
7. Urquhart, P., IEE Proceedings 135, 385 (1988).Google Scholar
8. (a) DiGiovanni, D. J., “Optical Waveguide Materials” edited by Broer, M. M.; Sigel, G. J., Kersten, R. T., Kawazoe, H., Mater. Res. Soc. Proc. 244, 135 (1992).Google Scholar
(b) Wagener, J. L., Wysocki, P. F., Digonnet, M. J. F., Shaw, H. J., DiGiovanni, D. J., Proceedings of SPIE, 1789, 80 (1993).Google Scholar
(c) DiGiovanni, D. J., Ceramic Transactions 75, 73 (1997).Google Scholar
9. Gapontsev, V. P., Matitsin, S. M., Isineev, A. A., Kravchenko, V. B., Optics and Laser Tech. 14, 189 (1982).Google Scholar
10. Ainslie, B. J., J. Lightwave Tech. 9, 220 (1991).Google Scholar
11. Lochhead, M. J., Bray, K. L., Chem Mater. 7, 572 (1995).Google Scholar
12. Lin, H., Jiang, S., Wu, J., Song, F., Peyghambarian, N., Pun, E. Y. B., J. Phys. D.; Applied Physics 36, 812 (2003).Google Scholar
13. Sohler, W., Suche, H., Optical Engineering 66, 127 (2000).Google Scholar