Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-25T15:51:46.989Z Has data issue: false hasContentIssue false

Organic-Containing Mesoporous Silicas with a Variety of Mesophases and a Periodic Pore Wall Structure

Published online by Cambridge University Press:  01 February 2011

Shinji Inagaki
Affiliation:
Toyota Central R&D Labs., Inc. Nagakute, Acihi 480-1192, Japan
Shiyou Guan
Affiliation:
Toyota Central R&D Labs., Inc. Nagakute, Acihi 480-1192, Japan
Get access

Abstract

In this report we introduce new types of organic-inorganic hybrid mesoporous materials, in which organic and inorganic moieties are distributed homogeneously at the molecular level in the framework, forming a covalently bonded network. Possessing unique surfaces on which both organic and inorganic components are exposed, these materials are expected to have applications in various areas as catalysts, adsorbents and separators, and as hosts for nano-cluster synthesis. The hybrid mesoporous materials showed not only unique surface properties but also unique structural features in micron- or angstrom-scales. Mesoporous materials containing ethylene groups in the main framework formed a variety of particle morphologies of hexagonal rod, spherical, and decaoctahedral shapes in the sizes of 1-10 μm. Mesoporous material containing phenylene groups showed novel crystal-like 7.6 Å periodicity in the pore walls. The mesoporous material has periodically arranged hydrophobic-hydrophilic surfaces, which is a great advantage for use as catalyst and host material for inclusion chemistry.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Kresge, C. T. Leonowicz, M. E. Roth, W. J. Vartuli, J. C. Beck, J. S. Nature 359, 710 (1992); J. S. Beck et al., J. Am. Chem. Soc. 114, 10834 (1992).Google Scholar
2. Yanagisawa, T. Shimizu, T. Kuroda, K. and Kato, C. Bull. Chem. Soc., Jpn. 63, 988 (1990).Google Scholar
3. Inagaki, S. Fukushima, Y. Kuroda, K. J. Chem. Soc., Chem. Commun. 680(1993).; S. Inagaki, A. Koiwai, N. Suzuki, Y. Fukushima, K. Kuroda, Bull. Chem. Soc., Jpn. 69, 1449 (1996).Google Scholar
4. Yang, P. Zhao, D. Margolese, D. I. Chmelka, B. F. Stucky, G. D. Nature 396, 152 (1998).Google Scholar
5. MacLachlan, M. J. Coombs, N. Ozin, G. A. Nature 397, 681 (1999).Google Scholar
6. Ciesla, U. Schacht, S. Stucky, G. D. Unger, K. K. Scuth, F. Angew. Chem. Int. Edn Engl. 35, 541 (1996).Google Scholar
7. Attard, G. S. et al., Science 278, 838 (1997).Google Scholar
8. Joo, S. H. et al., Nature 412, 169 (2001).Google Scholar
9. Burkett, S. L. Sims, S. D. Mann, S. Chem. Commun. 1362 (1996).Google Scholar
10. Macquarrie, D. J. Chem. Commun. 1961(1996).Google Scholar
11. Lim, M. H. Blanford, C. F. Stein, A. J. Am. Chem. Soc. 119, 4090 (1997).Google Scholar
12. Fowler, C. E. Burkett, S. L. Mann, S. Chem. Commun. 1769(1997).Google Scholar
13. Feng, X. et al., Science 276, 923 (1997).Google Scholar
14. W. Rhijin, M. V. Vos, D. E. D. Sels, B. F. Bossaert, W. D. Jacobs, P. A. Chem. Commun. 317(1998).Google Scholar
15. Lim, M. E. Blanford, C. F. Stein, A. Chem. Mater. 10, 467 (1998).Google Scholar
16. Inagaki, S. Guan, S. Fukushima, Y. Ohsuna, T. Terasaki, O. J. Am. Chem. Soc. 121, 9611 (1999).Google Scholar
17. Melde, B. J. Holland, B. T. Blanford, C. F. Stein, A. Chem. Mater. 11, 3302 (1999).Google Scholar
18. Ishii, C. Y. Asefa, T. Coombs, N. MacLachlan, M. J. Ozin, G. A. Chem. Commun. 2539(1999).Google Scholar
19. Aefa, T. MacLachlan, M. J. Coombs, N. Ozin, G. A. Nature 402, 867 (1999).Google Scholar
20. Inagaki, S. Guan, S. Fukushima, Y. Ohsuna, T. Terasaki., O., Stud. Surf. Sci. Catal. 129, 155 (2000).Google Scholar
21. Asefa, T. MacLachlan, M. J. Grondey, H. Coombs, N. Ozin, G. A. Angew. Chem. Int. Ed. 39, 1808 (2000).Google Scholar
22. Guan, S. Inagaki, S. Ohsuna, T. Terasaki, O. J. Am. Chem. Soc. 122, 5660 (2000).Google Scholar
23. Kruk, M. Jaroniec, M. Guan, S. Inagaki, S. J. Phys. Chem. B 105, 681 (2000).Google Scholar
24. MacLachlan, M. J. Asefa, T. Ozin, G. A. Chem. Eur. J. 6, 2507 (2000).Google Scholar
25. Yamamoto, K. Nohara, Y. Tatsumi, T. Chem. Lett. 648(2001).Google Scholar
26. Guan, S. Inagaki, S. Ohsuna, T. Terasaki, O. Microporous Mesoporous Mater. 44-45, 165 (2001).Google Scholar
27. Kim, J. M. Kim, S. K. Ryoo, R. Chem. Commun. 259(1998).Google Scholar
28. Sakamoto, Y. Kaneda, M. Terasaki, O. Zhao, D. Y. Kim., J. M. Stucky, G. Shin, H. J. Ryoo, R. Nature 408, 449 (2000).Google Scholar
29. Che, S. Sakamoto, Y. Terasaki, O. Tatsumi, T. Chem. Mater. 13, 2237 (2001).Google Scholar
30. Huo, Q. Margolese, D. I. Stucky, G. D. Chem. Mater. 8, 1147 (1996).Google Scholar
31. Huo, Q. Margolese, D. I. Ciesla, U. Feng, P. Gier, T. E. Sieger, P. Petroff, P. M. Schuth, F. Stucky, G. D. Nature 368, 317 (1994).Google Scholar
32. Huo, Q. Margolese, D. I. Ciesla, U. Demuth, D. G. Feng, P. Gier, T. E. Sieger, P. Firouzi, A. Chmelka, B. F. Schuth, F. Stucky, G. D. Chem. Mater. 6, 1176 (1994).Google Scholar
33. Huo, Q. Leon, R. Petroff, P. M. Stucky, G. D. Science 268, 1324 (1995).Google Scholar
34. Yang, P. Zhao, D. Margolese, D. I. Chmelka, B. F. Stucky, G. D. Nature 396, 152 (1998).Google Scholar
35. Lee, B. Lu, D. Kondo, J. N. Domen, K. Chem. Commun. 2118(2001).Google Scholar
36. Liu, Y. Zhang, W. Pinnavaia, T. J. Angew. Chem. Int. Edn Engl. 40, 1255 (2001).Google Scholar
37. Inagaki, S. Guan, S. Ohsuna, T. Terasaki, O. Nature 416, 304 (2002).Google Scholar