Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-27T02:36:53.690Z Has data issue: false hasContentIssue false

Organic CMOS Technology Based on Interface Doped Pentacene

Published online by Cambridge University Press:  01 February 2011

Marcus Ahles
Affiliation:
Institute of Materials Science, Darmstadt University of Technology, Petersenstraße 23, 64287 Darmstadt, Germany
Roland Schmechel
Affiliation:
Institute of Materials Science, Darmstadt University of Technology, Petersenstraße 23, 64287 Darmstadt, Germany
Heinz von Seggern
Affiliation:
Institute of Materials Science, Darmstadt University of Technology, Petersenstraße 23, 64287 Darmstadt, Germany
Get access

Abstract

An organic complementary-metal-oxide-semiconductor (CMOS) inverter based on pentacene acting as both n- and p-type organic semiconductor is presented. The circuit consists of two spatially separated transistors which are realized within one continuous pentacene layer. Both transistors act exclusively in unipolar mode with electron and hole mobilities of 0.11 cm2V-1s-1 and 0.10 cm2V-1s-1, respectively. In the domain of the n-channel, electron accumulation in the pentacene is enabled by deposition of traces of calcium acting as electron donator. The CMOS inverter works reliably within the range of the supply voltage (60 V) with a gain in between 17 and 24 which is among the highest values observed in organic systems. Nevertheless, the circuit shows hysteresis, which is explained by a gate voltage depending trap occupation in the n-channel.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Drury, C. J., Mutsaers, C. M. J., Hart, C. M., Matters, M., Leeuw, D. M. de, Appl. Phys. Lett. 73, 108 (1998).Google Scholar
2 Fix, W., Ullmann, A., Ficker, J., Clemens, W., Appl. Phys. Lett. 81, 1735 (2002).Google Scholar
3 Dimitrakopoulos, C. D. and Malenfant, P. R. L., Adv. Mater. 14, 99 (2002).Google Scholar
4 Lin, Y. Y., Dodabalapur, A., Sarpeshkar, R., Bao, Z., Li, W., Baldwin, K., Raju, V. R., Katz, H. E. Appl. Phys. Lett. 74, 2714 (1999)Google Scholar
5 Sakamoto, Y., Suzuki, T., Kobayashi, M., Gao, Y., Fukai, Y., Inoue, Y., Sato, F., Tokito, S., J. Am. Chem. Soc. 126, 8138 (2004).Google Scholar
6 Meijer, E. J., Leeuw, D. M. De, Setayesh, S., Veenendaal, E. Van, Huisman, B. H., Blom, P. W. M., Hummelen, J. C., Scherf, U., and Klapwijk, T. M., Nat. Mater. 2, 678 (2003).Google Scholar
7 Anthopoulos, T. D., Leeuw, D. M. de, Cantatore, E., Setayesh, S., Meijer, E. J., Tanase, C., Hummelen, J. C., Blom, P. W. M., Appl. Phys. Lett. 85, 4205 (2004)Google Scholar
8 Gundlach, D. J., Lin, Y. Y., Jackson, T. N., Nelson, S. F., and Schlom, D. G., IEEE El. Dev. Lett. 18, 87 (1997).Google Scholar
9 Ahles, M., Schmechel, R., Seggern, H. von, Appl. Phys. Lett. 85, 4499 (2004).Google Scholar
10 Yasuda, T., Goto, T., Fujita, K., and Tsutsui, T., Appl. Phys. Lett. 85, 2098 (2004).Google Scholar