Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-29T07:22:33.402Z Has data issue: false hasContentIssue false

Ordering in Compound Semiconductors: The Role of Transmission Electron Microscopy

Published online by Cambridge University Press:  10 February 2011

D. S. Su
Affiliation:
Institut fur Physik, Humboldt Universitäit zu Berlin, Invalidenstrasse 110, D-10115 Berlin
A. T. Tham
Affiliation:
Institut fur Physik, Humboldt Universitäit zu Berlin, Invalidenstrasse 110, D-10115 Berlin
P. Schubert-Bischoff
Affiliation:
Hahn-Meitner-lnstitut GmbH, Glienickerstrasse 100, D- 14109 Berlin
I. Hähnert
Affiliation:
Institut fur Physik, Humboldt Universitäit zu Berlin, Invalidenstrasse 110, D-10115 Berlin
W. Neumann
Affiliation:
Institut fur Physik, Humboldt Universitäit zu Berlin, Invalidenstrasse 110, D-10115 Berlin
M. Giersig
Affiliation:
Hahn-Meitner-lnstitut GmbH, Glienickerstrasse 100, D- 14109 Berlin
E. Zeitler
Affiliation:
Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, D- 14195 Berlin
Get access

Abstract

In this paper, the ordering of ternary semiconductor compounds is briefly reviewed by means of a coordination polyhedron model. Long-range ordering of chalcopyrite and CuAu-type structures can be represented as an array of repeating A2B2 tetrahedra. A CuAu-type ordered phase in a chalcopyrite AIBIIICVI2 compound is surrounded by an A3B+ AB3 boundary, whereas a CuPt-type ordered phase in a zinc-blende (A, B)IIICV compound is surrounded mainly by A2B2 type tetrahedra and thus restricted in size. Following the description of the ordered structure model, the detection of the asymmetry in ordering directions in (A, B)IIICV compounds is discussed. Some examples that employ transmission electron microscopy are presented.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Gomyo, A., Kobayashi, K., Kawata, S., Hino, I., Suzuki, T., and Yuasa, T., J. Cryst. Growth 77, 673 (1986)10.1016/0022-0248(86)90325-8Google Scholar
[2] Wei, S. H., Ferreira, L. G. and Zunger, A.-, Phys. Rev. B 45, 2533 (1992)10.1103/PhysRevB.45.2533Google Scholar
[3] see, for instance, the special issue of MRS Bulletin, Vol. 22, No. 7, 1997 Google Scholar
[4] Kuan, T.S., Kuech, T.F., Wang, W. I. and Wilkie, E. L., Phys. Rev. Lett. 54, 201 (1985)10.1103/PhysRevLett.54.201Google Scholar
[5] Murgatroyd, I. J., Norman, A. G., Booker, G. R. and Kerr, T. M., in Proceedings of XIth International Congress On Electron Microscopy, edited by Imura, T., Maruse, S and Suzuki, T. (Kyoto 1986), 1497 Google Scholar
[6] Jen, H. R., Cheng, M. J. and Stringfellow, G. B., Appl. Phys. Lett., 48, 1603 (1986)10.1063/1.96830Google Scholar
[7] Su, D. S., Neumann, W., Hunger, R., Giersig, M., Lux-Steiner, M. Ch. and Lewerenz, H. J., in Proceeding of 11th International Conference on Ternary & Multinary Compounds, edited by Thomlinson, R. D. (Salford 1997)Google Scholar
[8] Laudau, L. D. and Lifshitz, E. M., Statistical Physics (Pergamon press, Oxford 1969), Chap. 14.Google Scholar
[9] Wei, S. H., Ferreira, L. G., and Zunger, A., Phys. Rev. B 41, 8240 (1990)10.1103/PhysRevB.41.8240Google Scholar
[10] Suzuki, T., Gomyo, A., and Iijima, S., J. Cryst. Growth 99, 60 (1990)10.1016/0022-0248(90)90484-3Google Scholar