Published online by Cambridge University Press: 14 March 2011
In the electrospinning process, fibers ranging from 50 nm to 1000 nm or greater can be produced by applying an electric potential to a polymeric solution [1, 2]. Our group has studied the fabrication of electro-spun Poly-caprolactone (PCL) nanofiber consisting of a range of fiber diameter (nm-um) and pore sizes. PCL is a biocompatible, FDA approved and biodegradable [3, 4] polymer. As a solvent we have used 2,2,2-trifluoroethanol (TFE) for its biocompatibility, conductivity and high dielectric constant. The electrospinning technique consists of a simple setup with a number of variables working in a complex and unpredictable way. The variables affecting fiber diameter are polymer concentration in the solution, flow rate, applied voltage, tip to collector distance, diameter of the needle/capillary, polymer/solvent dielectric constant etc. In our study we have found that concentration of the solution and molecular weight of the polymer are the most important parameters for forming the nanofibers and viscosity is important for the fiber diameter. To optimize so many variables to control the fiber diameter, we have used the factorial design method. The study is important for the fabrication of biomimetic scaffold for vascular implant and tissue engineering application.