Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-29T09:41:37.100Z Has data issue: false hasContentIssue false

Optimization of Mo-Si-B Intermetallics

Published online by Cambridge University Press:  11 February 2011

Joachim H. Schneibel
Affiliation:
Metals and Ceramics Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, U.S.A
Peter F. Tortorelli
Affiliation:
Metals and Ceramics Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, U.S.A
Matthew J. Kramer
Affiliation:
Iowa State University, Ames Laboratory, Ames, Iowa 50011–3020, U.S.A.
Andrew J. Thom
Affiliation:
Iowa State University, Ames Laboratory, Ames, Iowa 50011–3020, U.S.A.
Jamie J. Kruzic
Affiliation:
Materials Sciences Division, Lawrence Berkeley National Laboratory, and Department of Materials Science and Engineering, University of California, Berkeley, CA 94720, U.S.A.
Robert O. Ritchie
Affiliation:
Materials Sciences Division, Lawrence Berkeley National Laboratory, and Department of Materials Science and Engineering, University of California, Berkeley, CA 94720, U.S.A.
Get access

Abstract

Mo-Si-B intermetallics consisting of the phases Mo3Si, Mo5SiB2, and α-Mo (Mo solid solution) can be designed to exhibit some degree of oxidation resistance, fracture toughness, and creep strength, but not necessarily all of these at the same time. For example, microstructures that enhance the oxidation resistance are typically associated with low fracture toughness. Examples will be given illustrating the oxidation resistance, fracture toughness, and creep strength of Mo-Si-B intermetallics as a function of their phase volume fractions as well as the topology and length scale of their microstructures. Microstructures containing either individual α-Mo particles or a continuous α-Mo matrix will be described. The examples provide possible ways to control the composition and microstructure of Mo-Si-B alloys such as to optimize the desired balance of properties.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Meyer, M. K., Kramer, M. J., and Akinc, M., Intermetallics 4 (1996) 273281.Google Scholar
2. Akinc, M., Meyer, M. K., Kramer, M. J., Thom, A. J., Huebsch, J. J., and Cook, B., Intermetallics A261 (1999) 1623.Google Scholar
3. Meyer, M. K., Thom, A. J., and Akinc, M., Intermetallics 7 (1999) 153162.Google Scholar
4. Berczik, D. M., United States Patent 5, 595, 616 (1997), “Method for enhancing the oxidation resistance of a molybdenum alloy, and a method of making a molybdenum alloy.”Google Scholar
5. Berczik, D. M., United States Patent 5, 693, 156 (1997), “Oxidation Resistant Molybdenum Alloys.”Google Scholar
6. Raj, R. and Thompson, L. R., Acta Metall. Mater. 42 (1994) 41354142.Google Scholar
7. Schneibel, J. H., Kramer, M. J., Ünal, Ö., and Wright, R. N., Intermetallics 9 (2001) 2531.Google Scholar
8. Schneibel, J. H., Kramer, M. J., and Easton, D. S., Scr. Mater. 46[3] (2002) pp. 217221.Google Scholar
9. Pint, B. A., Tortorelli, P. F., and Wright, I. G., pp. 111–32 in “Cyclic Oxidation Testing of High Temperature Materials,”Google Scholar
Schütze, M. and Quadakkers, W. J. (eds.), European Federation of Corrosion Publication 27, IOM Communications, London, 1999.Google Scholar
10. Choe, H., Chen, D., Schneibel, J. H., and Ritchie, R. O., Intermetallics, 9[4] (2001) 319329.Google Scholar
11. Choe, H., Schneibel, J. H., and Ritchie, R. O., accepted for publication, Metall. Mater. Trans. A, 2003.Google Scholar
12. Schneibel, J. H. and Lin, H. T., Materials at High Temperatures 19[1] (2002) 2528.Google Scholar
13. Schneibel, J. H., Easton, D. S., Choe, H., and Ritchie, R. O., in “Structural Intermetallics, Third International Symposium,” Hemker, K. J. and Dimiduk, D. M., eds., TMS, Warrendale, PA, 2001, pp. 801809.Google Scholar