Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-20T00:44:56.487Z Has data issue: false hasContentIssue false

Optimization of GaN Channel Conductivity in AlGaN/GaN HFET Structures Grown by MOVPE

Published online by Cambridge University Press:  01 February 2011

S.M. Hubbard
Affiliation:
EECS Department, The University of Michigan Ann Arbor, MI 48109–2122, USA and Darmstadt University of Technology, Department of High Frequency Electronics Merckstrasse 25, 64283 Darmstadt, Germany E-mail: [email protected], [email protected] or [email protected]
G. Zhao
Affiliation:
EECS Department, The University of Michigan Ann Arbor, MI 48109–2122, USA and Darmstadt University of Technology, Department of High Frequency Electronics Merckstrasse 25, 64283 Darmstadt, Germany E-mail: [email protected], [email protected] or [email protected]
D. Pavlidis
Affiliation:
EECS Department, The University of Michigan Ann Arbor, MI 48109–2122, USA and Darmstadt University of Technology, Department of High Frequency Electronics Merckstrasse 25, 64283 Darmstadt, Germany E-mail: [email protected], [email protected] or [email protected]
E. Cho
Affiliation:
EECS Department, The University of Michigan Ann Arbor, MI 48109–2122, USA and Darmstadt University of Technology, Department of High Frequency Electronics Merckstrasse 25, 64283 Darmstadt, Germany E-mail: [email protected], [email protected] or [email protected]
W. Sutton
Affiliation:
EECS Department, The University of Michigan Ann Arbor, MI 48109–2122, USA and Darmstadt University of Technology, Department of High Frequency Electronics Merckstrasse 25, 64283 Darmstadt, Germany E-mail: [email protected], [email protected] or [email protected]
Get access

Abstract

Optimization of GaN channel conductivity in AlGaN/GaN Heterojunction Field Effect Transistor (HFET) structures was performed using High Resistivity (HR) GaN templates grown by Metal-organic Vapor Phase Epitaxy (MOVPE). The GaN sheet resistance was tuned using final nucleation layer (NL) annealing temperature. Using an annealing temperature of 1033°C, GaN with sheet resistance of 10 Ω/sq was achieved, comparable to that of Fe-doped GaN. X-Ray Diffraction (XRD) and Photoluminescence (PL) analysis show that the high resistance GaN is achieved due to compensating acceptor levels introduced through edge-type threading dislocations. XRD analysis also shows optimization of annealing temperature provided a means to maximize GaN sheet resistance without significantly degrading material quality. AlGaN/GaN HFET layers grown using HR GaN templates gave surface and interface roughness of 14 and 7 Å, respectively. The 2DEG Hall mobility and sheet charge of HFETs grown using HR GaN templates was comparable to similar layers grown using unintentionally doped (UID) GaN templates.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Bougriouaa, Z., Moermana, I., Sharma, N., Wallis, R.H., Cheyns, J., Jacobs, K., Thrush, E.J., Considine, L., Beanland, R., Farvacque, J.-L., Humphreys, C., J. Crystal Growth 230, 573 (2001).Google Scholar
2. Wickenden, A.E., Koleske, D.D., Henry, R.L., Twigg, M.E., Fatemi, M., J. Crystal Growth 260, 54 (2004).Google Scholar
3. Heikman, S., Keller, S., DenBaars, S.P., Mishra, U.K., Appl. Phys. Lett. 81, 439 (2002).Google Scholar
4. Heying, B., Wu, X. H., Keller, S., Li, Y., Kapolnek, D., Keller, B. P., DenBaars, S. P., Speck, J. S., Appl. Phys. Lett. 68, 643 (1996).Google Scholar
5. Heinke, H., Kirchner, V., Einfeldt, S., Hommel, D., Appl. Phys. Lett. 77, 2145 (2000).Google Scholar
6. Kornitzer, K., Ebner, T., Thonke, K., Sauer, R., Kirchner, C., Schwegler, V., Kamp, M., Leszczynski, M., Grzegory, I., Porowski, S., Phys. Rev. B 60, 1471 (1999).Google Scholar
7. Figge, S., Bottcher, T., Einfeldt, S., Hommel, D., J. Crystal Growth 221, 262 (2000).Google Scholar
8. Wood, D.A., Parbrook, P.J., Lynch, R.J., Lada, M., Cullis, A.G., phys. stat. sol. (a) 188, 641 (2001).Google Scholar
9. Koleske, D.D., Coltrin, M.E., Allerman, A.A., Cross, K.C., Mitchell, C.C., Figiel, J.J., Appl. Phys. Lett. 82, 1170 (2003).Google Scholar
10. Chen, J., Zhang, S.M., Zhang, B.S., Zhu, J.J., Feng, G., Shen, X.M., Wang, Y.T., Yang, H., Zheng, W.C., J. Crystal Growth 254, 348 (2003).Google Scholar