Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-27T02:17:04.258Z Has data issue: false hasContentIssue false

Optimization of Ce Content in CexLa1-xF3 Colloidal Nanocrystals for Gamma Radiation Detection

Published online by Cambridge University Press:  31 January 2011

Nathan J Withers
Affiliation:
[email protected], University of New Mexico, Center for High Technology Materials, Albuquerque, New Mexico, United States
Krishnaprasad Sankar
Affiliation:
[email protected], University of New Mexico, Center for High Technology Materials, Albuquerque, New Mexico, United States
John B Plumley
Affiliation:
[email protected], University of New Mexico, Center for High Technology Materials, Albuquerque, New Mexico, United States
Brian A Akins
Affiliation:
[email protected], University of New Mexico, Center for High Technology Materials, Albuquerque, New Mexico, United States
Tosifa A Memon
Affiliation:
[email protected], University of New Mexico, Center for High Technology Materials, Albuquerque, New Mexico, United States
Antonio C Rivera
Affiliation:
[email protected], University of New Mexico, Center for High Technology Materials, Albuquerque, New Mexico, United States
Gennady Smolyakov
Affiliation:
[email protected], University of New Mexico, Center for High Technology Materials, Albuquerque, New Mexico, United States
Marek Osiński
Affiliation:
[email protected], University of New Mexico, Center for High Technology Materials, Albuquerque, New Mexico, United States
Get access

Abstract

We report on experimental investigations of CexLa1-xF3 colloidal nanocrystals (CNCs) and their properties in function of Ce content. The CNCs were characterized by TEM, energy-dispersive X-ray spectroscopy (EDS), steady-state UV-VIS optical absorption and photoluminescence (PL) spectroscopy, and by PL lifetime measurements. We also report on observations of scintillation from the cerium-doped lanthanum fluoride CNC material in experiments on radiation detection.

Type
Research Article
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Osiñski, M., Jovin, T. M. and Yamamoto, K. (Eds.), Colloidal Quantum Dots for Biomedical Applications III, San Jose, CA, 19-21 Jan. 2008, Proc. SPIE 6866.Google Scholar
2. Matsui, I.Nanoparticles for electronic device applications: A brief review”, J. Chem. Eng. Japan 38 (8), 535546 (2005).Google Scholar
3. Li, Y.-Q. Rizzo, A. Cingolani, R. and Gigli, G.White-light-emitting diodes using semiconductor nanocrystals”, Microchimica Acta 159 (3-4), 207215 (July 2007).Google Scholar
4. Chen, H. S. and Wang, S. J. J.White-light emission from organics-capped ZnSe quantum dots and application in white-light-emitting diodes”, Appl. Phys. Lett. 86, Art. 131905 (2005).Google Scholar
5. Michalet, X. Pinaud, F. Lacoste, T. D. Dahan, M. Bruchez, M. P. Alivisatos, A. P. and Weiss, S., “Properties of fluorescent semiconductor nanocrystals and their application to biological labeling”, Single Molecules 2 (4), 14385171 (2001).Google Scholar
6. Shim, M. and Guyot-Sionnest, P., “n-type colloidal semiconductor nanocrystals”, Nature 407, 981983 (2000).Google Scholar
7. Stouwdam, J. W. Hebbink, G. A. Huskens, J. and Veggel, F. C. J. M. van, “Lanthanidedoped nanoparticles with excellent luminescent properties in organic media”, Chem. Mater. 15 (24), 46044616 (2003).Google Scholar
8. Klink, S. I. Hebbink, G. A. Grave, L. Peters, F. G. A. Veggel, F. C. J. M. Van, Reinhoudt, D. N., and Hofstraat, J. W.Near-infrared and visible luminescence from terphenylbased lanthanide(III) complexes bearing amido and sulfonamido pendant arms”, Eur. J. Org. Chem. 10, 19231931 (2000).Google Scholar
9. Moses, W. W. and Derenzo, S. E.The scintillation properties of cerium-doped lanthanum fluoride”, Nucl. Instrum. Methods Phys. Res. A A299 (1-3), 5156 (1990).Google Scholar
10. Dai, S. Saengkerdsub, S. Im, H.-J., Stephan, A. C. and Mahurin, S. M. “Nanocrystalbased scintillators for radiation detection”, Unattended Radiation Sensor Systems for Remote Applications, 15-17 Apr. 2002, Washington, DC, AIP Conf. Proc. 632, pp. 220224, 2002.Google Scholar
11. Letant, S. E. and Wang, T.-F., “Study of porous glass doped with quantum dots or laser dyes under alpha irradiation”, Appl. Phys. Lett. 88 (10), Art. 103110, 8 March 2006.Google Scholar
12. Letant, S. E. and Wang, T. F.Semiconductor quantum dot scintillation under Á-ray irradiation”, Nano Lett. 6 (12), 28772880, 13 Dec. 2006.Google Scholar
13. Campbell, I. H. and Crone, B. K.Quantum-dot/organic semiconductor composites for radiation detection”, Adv. Mater. 18 (1), 7779 (2006).Google Scholar
14. McKigney, E. A. Sesto, R. E. Del, Jacobsohn, L. G. Santi, P. A. Muenchausen, R. E. Ott, K. C. McCleskey, T. M. Bennett, B. L. Smith, J. F. and Cooke, D. W.Nanocomposite scintillators for radiation detection and nuclear spectroscopy”, Nucl. Instrum. Methods Phys. Res. A 579 (1), 1518, 21 Aug. 2007.Google Scholar
15. Knoll, G. F. Radiation Detection and Measurement (John Wiley and Sons, New York, 2000), p. 219.Google Scholar
16. Wang, F. Zhang, Y. Fan, X. and Wang, M.One-pot synthesis of chitosan/LaF3:Eu3+ nanocrystals for bio-applications”, Nanotechnology 17, 15271532 (2006).Google Scholar
17. Stubicar, N. Zipper, P. and Cherney, B.Variety of aggregation and growth processes of lanthanum fluoride as a function of La/F activity ratio”, Crystal Growth & Design 5 (1), 123128 (2005).Google Scholar
18. Dorenbos, P.5d-level energies of Ce3+ and the crystalline environment. I. Fluoride compounds”, Phys. Rev. B 62 (23), 1564015649 (2000).Google Scholar