Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-27T02:38:15.806Z Has data issue: false hasContentIssue false

Optically Stable Biocompatible Flame-made SiO2-coated Y2O3:Tb3+ Nanophosphors for Cell Imaging

Published online by Cambridge University Press:  12 September 2013

G.A. Sotiriou
Affiliation:
Particle Technology Laboratory, [email protected]
D. Franco
Affiliation:
Laboratory of Thermodynamics in Emerging Technologies, [email protected] of Mechanical and Process Engineering Swiss Federal Institute of Technology (ETH Zurich) Sonneggstrasse 3, CH-9092, Zurich, Switzerland
D. Poulikakos
Affiliation:
Laboratory of Thermodynamics in Emerging Technologies, [email protected] of Mechanical and Process Engineering Swiss Federal Institute of Technology (ETH Zurich) Sonneggstrasse 3, CH-9092, Zurich, Switzerland
A. Ferrari
Affiliation:
Laboratory of Thermodynamics in Emerging Technologies, [email protected] of Mechanical and Process Engineering Swiss Federal Institute of Technology (ETH Zurich) Sonneggstrasse 3, CH-9092, Zurich, Switzerland
Get access

Abstract

Nanophosphors are a promising new class of inorganic labels for bio-imaging applications, possessing a narrow emission bandwidth, good photostability and low toxicity. The effect of crystallinity of the host matrix on the phosphorescence of Tb-doped (1-5 at% Tb) Y2O3 nanophosphors is explored. Nanophosphors with different crystal phase (cubic and monoclinic) and morphology (uncoated and SiO2-coated) but with similar sizes were prepared by flame spray synthesis. That allowed the direct comparison of their phosphorescence performance excluding any observed size effect. The as prepared nanophosphors were characterized by X-ray diffraction, high resolution electron microscopy and photoluminescence spectroscopy. The meta-stable monoclinic crystal structure of Y2O3:Tb3+ nanophosphors favors their green phosphorescence.

Type
Articles
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Justel, T.; Nikol, H.; Ronda, C. New developments in the field of luminescent materials for lighting and displays Angew. Chem.-Int. Edit. 1998, 37, 30853103.3.0.CO;2-W>CrossRefGoogle ScholarPubMed
Igarashi, T.; Ihara, M.; Kusunoki, T.; Ohno, K.; Isobe, T.; Senna, M. Relationship between optical properties and crystallinity of nanometer Y2O3: Eu phosphor Appl. Phys. Lett. 2000, 76, 15491551.CrossRefGoogle Scholar
Zhang, F.; Wong, S. S. Ambient large-scale template-mediated synthesis of high-aspect ratio single-crystalline, chemically doped rare-earth phosphate nanowires for bioimaging ACS Nano 2010, 4, 99112.CrossRefGoogle ScholarPubMed
Sotiriou, G. A.; Schneider, M.; Pratsinis, S. E. Color-tunable nanophosphors by codoping flame-made Y2O3 with Tb and Eu J. Phys. Chem. C 2011, 115, 10841089.CrossRefGoogle Scholar
Das, G. K.; Tan, T. T. Y. Rare-earth-doped and codoped Y2O3 nanomaterials as potential bioimaging probes J. Phys. Chem. C 2008, 112, 1121111217.CrossRefGoogle Scholar
Sotiriou, G. A. Biomedical applications of multifunctional plasmonic nanoparticles Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology 2012, in press, DOI: 10.1002/wnan.1190.Google ScholarPubMed
Sotiriou, G. A.; Franco, D.; Poulikakos, D.; Ferrari, A. Optically Stable Biocompatible Flame-Made SiO2-Coated Y2O3:Tb3+ Nanophosphors for Cell Imaging ACS Nano 2012, 6, 38883897.CrossRefGoogle ScholarPubMed
Sotiriou, G. A.; Pratsinis, S. E. Engineering nanosilver as an antibacterial, biosensor and bioimaging material Curr. Opin. Chem. Eng. 2011, 1, 310.CrossRefGoogle ScholarPubMed
Camenzind, A.; Strobel, R.; Pratsinis, S. E. Cubic or monoclinic Y2O3:Eu3+ nanoparticles by one step flame spray pyrolysis Chem. Phys. Lett. 2005, 415, 193197.CrossRefGoogle Scholar
Sotiriou, G. A.; Schneider, M.; Pratsinis, S. E. Green, Silica-Coated Monoclinic Y2O3:Tb3+ Nanophosphors: Flame Synthesis and Characterization The Journal of Physical Chemistry C 2012, 116, 44934499.CrossRefGoogle Scholar
Konrad, A.; Fries, T.; Gahn, A.; Kummer, F.; Herr, U.; Tidecks, R.; Samwer, K. Chemical vapor synthesis and luminescence properties of nanocrystalline cubic Y2O3:Eu J. Appl. Phys. 1999, 86, 31293133.CrossRefGoogle Scholar
Konrad, A.; Herr, U.; Tidecks, R.; Kummer, F.; Samwer, K. Luminescence of bulk and nanocrystalline cubic yttria J. Appl. Phys. 2001, 90, 35163523.CrossRefGoogle Scholar
Ray, S.; Pramanik, P.; Singha, A.; Roy, A. Optical properties of nanocrystalline Y2O3: Eu3+ J. Appl. Phys. 2005, 97, 094312.CrossRefGoogle Scholar
Carlson, O. N. The O-Y (Oxygen-Yttrium) system Bull. Alloy Phase Diagrams 1990, 11, 6166.CrossRefGoogle Scholar
Qin, X.; Ju, Y. G.; Bernhard, S.; Yao, N. Flame synthesis of Y2O3: Eu nanophosphors using ethanol as precursor solvents J. Mater. Res. 2005, 20, 29602968.CrossRefGoogle Scholar
Wang, L.; Pan, Y. X.; Ding, Y.; Yang, W. G.; Mao, W. L.; Sinogeikin, S. V.; Meng, Y.; Shen, G. Y.; Mao, H. K. High-pressure induced phase transitions of Y2O3 and Y2O3:Eu3+ Appl. Phys. Lett. 2009, 94, 061921.CrossRefGoogle Scholar
Graeve, O. A.; Corral, J. O. Preparation and characterization of rare-earth-doped Y2O3 luminescent ceramics by the use of reverse micelles Opt. Mater. 2006, 29, 2430.CrossRefGoogle Scholar
Sotiriou, G. A.; Hirt, A. M.; Lozach, P. Y.; Teleki, A.; Krumeich, F.; Pratsinis, S. E. Hybrid, silica-coated, Janus-like plasmonic-magnetic nanoparticles Chem. Mater. 2011, 23, 19851992.CrossRefGoogle ScholarPubMed
Sotiriou, G. A.; Sannomiya, T.; Teleki, A.; Krumeich, F.; Vörös, J.; Pratsinis, S. E. Non-toxic dry-coated nanosilver for plasmonic biosensors Adv. Funct. Mater. 2010, 20, 42504257.CrossRefGoogle ScholarPubMed
Teleki, A.; Akhtar, M. K.; Pratsinis, S. E. The quality of SiO2-coatings on flame-made TiO2-based nanoparticles J. Mater. Chem. 2008, 18, 35473555.CrossRefGoogle Scholar
Teleki, A.; Heine, M. C.; Krumeich, F.; Akhtar, M. K.; Pratsinis, S. E. In situ coating of flame-made TiO2 particles with nanothin SiO2 films Langmuir 2008, 24, 1255312558.CrossRefGoogle ScholarPubMed
Teleki, A.; Suter, M.; Kidambi, P. R.; Ergeneman, O.; Krumeich, F.; Nelson, B. J.; Pratsinis, S. E. Hermetically coated superparamagnetic Fe2O3 particles with SiO2 nanofilms Chem. Mater. 2009, 21, 20942100.CrossRefGoogle Scholar
Kubrin, R.; Tricoli, A.; Camenzind, A.; Pratsinis, S. E.; Bauhofer, W. Flame aerosol deposition of Y2O3:Eu nanophosphor screens and their photoluminescent performance Nanotechnology 2010, 21,CrossRefGoogle ScholarPubMed
Ray, S.; Patra, A.; Pramanik, P. Photoluminescence properties of nanocrystalline Tb3+ doped Y2O3 phosphor prepared through a novel synthetic route Opt. Mater. 2007, 30, 608616.CrossRefGoogle Scholar
Sun, J. M.; Skorupa, W.; Dekorsy, T.; Helm, M.; Rebohle, L.; Gebel, T. Bright green electroluminescence from Tb3+ in silicon metal-oxide-semiconductor devices J. Appl. Phys. 2005, 97, 123513.CrossRefGoogle Scholar
Fu, Y.-X.; Sun, Y.-H. Comparative study of synthesis and characterization of monodispersed SiO2 @ Y2O3:Eu3+ and SiO2 @ Y2O3:Eu3+ @ SiO2 core-shell structure phosphor particles J. Alloy. Compd. 2009, 471, 190196.CrossRefGoogle Scholar
Blasse, G. The physics of new luminescent materials Mater. Chem. Phys. 1987, 16, 201236.CrossRefGoogle Scholar
Blasse, G.; Grabmaier, B. C. Luminescent Materials. Springer: Berlin, 1994.CrossRefGoogle Scholar