Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-19T05:52:46.706Z Has data issue: false hasContentIssue false

Optically Nonlinear Crystalline Colloidal Self Assembled Submicron Periodic Structures for Optical Limiters

Published online by Cambridge University Press:  15 February 2011

Sanford A. Asher
Affiliation:
Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260
Song-Yuan Chang
Affiliation:
Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260
Albert Tse
Affiliation:
Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260
Lei Liu
Affiliation:
Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260
Guisheng Pan
Affiliation:
Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260
Zhijun Wu
Affiliation:
Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260
Pusheng Li
Affiliation:
Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260
Get access

Extract

The development of optical technologies requires the fabrication of reliable optical switching and limiting devices. Optical switches modulate the transmission or reflection of incident light, while optical limiters serve to limit transmission to prevent the transmitted light intensity from exceeding a defined level. A major application of optical limiters is to protect delicate sensors.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. See the accompanying papers in this symposium volume.Google Scholar
2. Asher, S. A., Kesavamoorthy, R., Jagannathan, S., Rundquist, P., SPIE Vol.1626 Nonlinear Optics III, 238241 (1992).Google Scholar
3. Flaugh, P. L., O'Donnell, S. E., and Asher, S. A., Appi. Spectrosc. 38, 847850 (1984).Google Scholar
4. Carlson, R. J. and Asher, S. A., Appl. Spectrosc. 38, 297304 (1984).Google Scholar
5. Zahorchak, J. C., Kesavamoorthy, R., Coalson, R. D., and Asher, S. A., J. Chem. Phys. 96, 68736879 (1992).Google Scholar
6. Rundquist, P. A., Photinos, P., Jagannathan, S., and Asher, S. A., J. Chem. Phys. 91, 49324941 (1989).Google Scholar
7. Asher, S. A., Flaugh, P. L. and Washinger, G., Spectroscopy 1, 2631 (1986).Google Scholar
8. Asher, S. A., Holtz, J., Liu, L., and Wu, Z., J. Am. Chem. Soc. 116, 49974998 (1994).Google Scholar
9. Kesavamoorthy, R., Super, M. S., and Asher, S. A., J. Appl. Phys. 71, 11161123 (1992).Google Scholar
10. Chang, S.-Y., Liu, L., and Asher, S. A., J. Am. Chem. Soc. 116, 67396744 (1994).Google Scholar
11. Chang, S.-Y., Liu, L., and Asher, S. A., J. Am. Chem. Soc. 116, 67456747 (1994)Google Scholar