Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-29T07:25:29.600Z Has data issue: false hasContentIssue false

Optically Induced Dynamics of Isocyanate Organic Films Containing Azobenzene Chromophores

Published online by Cambridge University Press:  21 March 2011

Mi Jeong Kim
Affiliation:
Department of Materials Science and Engineering, Kwang-Ju Institute of Science and Technology, Kwangju, 500-712, KOREA.
Eun-Mi Seo
Affiliation:
Department of Materials Science and Engineering, Kwang-Ju Institute of Science and Technology, Kwangju, 500-712, KOREA.
Yeong-Deuk Shin
Affiliation:
Department of Materials Science and Engineering, Kwang-Ju Institute of Science and Technology, Kwangju, 500-712, KOREA.
Jae-Suk Lee
Affiliation:
Department of Materials Science and Engineering, Kwang-Ju Institute of Science and Technology, Kwangju, 500-712, KOREA.
Dong-Yu Kim
Affiliation:
Department of Materials Science and Engineering, Kwang-Ju Institute of Science and Technology, Kwangju, 500-712, KOREA.
Get access

Abstract

The photophysical formation of surface relief grating (SRG) was compared between isocyanate-based polymeric and non-polymeric thin films of low molecular weight organics containing azobenzene group. The non-polymeric film forms faster and more efficient surface grating formation than the polymeric film when exposed to an interference pattern of polarized Ar+ laser beams at 488 nm. However, the polymeric materials exhibited higher stability of SRG and orientation of azobenzenes than non-polymeric ones. The relation between the rate of photoinduced surface modulation and orientation of azobenzenes is discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Kim, D. Y., Tripathy, S. K., Li, L. and Kumar, J., Appl. Phys. Lett. 66, 1166 (1995).Google Scholar
2. Rochon, P., Batalla, E. and Natansohn, A., Appl. Phys. Lett. 66, 136 (1995).Google Scholar
3. Viswananthan, N. K., Kim, D. Y., Bian, S., Williams, J., Lin, W., Li, L., Samuelson, L., Kumar, J. and Tripathy, S. K., J. Mater. Chem. 9, 1941 (1999).Google Scholar
4. Kumar, J., Li, L., Jiang, X. L., Kim, D. Y., Lee, T. S. and Tripathy, S.K., Appl. Phys. Lett. 72, 2096 (1998).Google Scholar
5. Bian, S., Williams, J. M., Kim, D. Y., Li, L., Balasubramanian, S., Kumar, J. and Tripathy, S., J. Appl. Phys. 86, 4498 (1999).Google Scholar
6. Barrett, C. J., Rochon, P. and Natansohn, A., J. Chem. Phys. 109, 1505 (1998).Google Scholar
7. Geue, T., Schultz, M., Grenzer, J., Pietsch, U., Natansohn, A. and Rochon, P., J. Appl. Phys. 87, 7712 (2000).Google Scholar
8. Pedersen, T. G., Johansen, P. M., Holme, N. C. R., Ramanujam, P. S. and Hvilsted, S. Phys. Rev. Lett. 80, 89 (1998).Google Scholar
9. Lefin, P., Fiorini, C. and Nunzi, J. M., Opt. Mater. 9, 323 (1998).Google Scholar
10. Shin, Y. D., Cho, Y. S., Kim, J. J., Lee, J. S., Han, S. H. and Wu, J. W., Mol. Cryst. Liq. Cryst. 349, 9 (2000).Google Scholar