Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-28T10:05:28.404Z Has data issue: false hasContentIssue false

Optically Detected Magnetic Resonance of Group IV and Group VI Donors in Al0.6Ga0.4As/GaAs Heterostructures

Published online by Cambridge University Press:  25 February 2011

E. Glaser
Affiliation:
Naval Research Laboratory, Washington, D.C., 20375 U.S.A.
T.A. Kennedy
Affiliation:
Naval Research Laboratory, Washington, D.C., 20375 U.S.A.
B. Molnar
Affiliation:
Naval Research Laboratory, Washington, D.C., 20375 U.S.A.
M. Mizuta
Affiliation:
Fundamental Research Laboratory, NEC Corporation, 34 Miyukigaoka, Tsukuba 305, Japan
Get access

Abstract

The influence of chemically different donor species on the nature of shallow donor states in Al0.6Ga0.4As/GaAs heterostructures has been investigated by optically detected magnetic resonance (ODMR). Previous theoretical work by Morgan predicts a triplet state for group IV donors and a singlet state for group VI donors. ODMR experiments were performed on as-grown and implanted Si-, Se-, and S-doped epitaxial layers of Al0.6Ga0.4As grown on (001) GaAs substrates. The effective-mass states are modified by the heter-oepitaxial strain in these layers. The Si donors are characterized as quasi-independent valley states. The Se and S donors have valley-orbit splitting energies (i.e. chemical shifts) of 19-20 meV . The results indicate that Si, Se, and S donors are on the lattice sites in the metastable state of DX.

Type
Research Article
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 For a review, see Theis, T.N., in Shallow Impurities in Semiconduc-tors-1988. edited by Monemar, B., IOP Conf. Proc. No. 95 (Institute of Physics, Bristol, 1989), p.307.Google Scholar
2 Dmochowski, J.E., Dobaczewski, L., Langer, J.M., and Jantsch, W., Phys. Rev. B40, 9671 (1989).Google Scholar
3 Mizuta, M. and Mori, K., Phys. Rev. B37, 1043 (1988).Google Scholar
4 Bourgoin, J.C., Feng, S.L., and von Bardeleben, H.J., Phys. Rev. B40, 7663 (1989).Google Scholar
5 Chadi, D.J. and Chang, K.J., Phys. Rev. Lett. 61, 873 (1988).Google Scholar
6 Glaser, E., Kennedy, T.A., Sillmon, R., and Spencer, M.G., Phys. Rev. B40, 3447 (1989).Google Scholar
7 Mooney, P.M., Wilkening, W., Kaufmann, U., and Kuech, T.F., Phys. Rev. B39, 5554 (1989), and private communciation.Google Scholar
8 Lang, D.V. and Logan, R.A., Inst. Phys. Conf. Ser. No. 43, 433 (1979).Google Scholar
9 Kumagai, O., Kawai, H., Mori, Y., and Kaneko, K., Appl. Phys. Lett. 45, 1322 (1984).Google Scholar
10 See Watts, R.K., Point Defects in Crystals, (John Wiley and Sons, New York, 1977), p. 217.Google Scholar
11 Altarelli, M., J. Phys. Soc. Jpn. 49, Suppl. A, 169 (1980).Google Scholar
12 Mehran, F., Morgan, T.N., Title, R.S., and Blum, S.E., Solid State Comm. ,11, 661 (1972).Google Scholar
13 Kennedy, T.A. and Glaser, E., in The DX Center in III-V Ternary Compounds, edited by Bourgoin, J.C. (Trans Tech Publications, Switzerland), in press.Google Scholar
14 Morgan, T.N., Phys. Rev. B34, 2664 (1986), and references therein.Google Scholar
15 van Kesteren, H.W., Cosman, E.C., Dawson, P., Moore, K.J., and Foxon, C. T., Phys. Rev. B39, 13426 (1989).Google Scholar
16 Kamigaki, K., Sakashita, H., Kato, H., Nakayama, M., Sano, N., and Terauchi, H., Appl. Phys. Lett. 49, 1071 (1986).Google Scholar
17 Lefebvre, P., Gil, B., Mathieu, H., and Planel, R., Phys. Rev. B40, 7802 (1989).Google Scholar
18 Wilson, D.K. and Feher, G., Phys. Rev. 124, 1068 (1961).Google Scholar