No CrossRef data available.
Published online by Cambridge University Press: 25 February 2011
We present for the first time an optically detected magnetic resonance (ODMR) study of a hydrogen-related defect in silicon. The defect is present in hydrogenated boron-doped silicon single crystals, after room-temperature electron-irradiation. A spin-triplet (S=1) is shown to be the electronic state responsible for the observed ODMR spectrum. An angular dependence study of the ODMR spectrum reveals a C2v defect symmetry. The defect model is discussed in terms of a di-hydrogen-vacancy complex. The role of this defect as an efficient recombination channel (presumably non-radiative) for the non-equilibrium free carriers is also demonstrated.