Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-23T11:16:41.094Z Has data issue: false hasContentIssue false

Optically Controlled Nanomagnets

Published online by Cambridge University Press:  31 January 2011

Sebastian Mackowski
Affiliation:
[email protected], Nicolaus Copernicus University, Institute of Physics, Torun, Poland
Tak Gurung
Affiliation:
[email protected], University of Cincinnati, Department of Physics, Cincinnati, Ohio, United States
Grzegorz Karczewski
Affiliation:
[email protected], Polish Academy of Sciences, Institute of Physics, Warsaw, Poland
Howard E Jackson
Affiliation:
[email protected], University of Cincinnati, Department of Physics, Cincinnati, Ohio, United States
Leigh Smith
Affiliation:
[email protected], University of Cincinnati, Department of Physics, Cincinnati, Ohio, United States
Get access

Abstract

We report on single dot photoluminescence imaging and spectroscopy at B=0T on magnetically doped CdMnTe self-assembled quantum dots with average Mn concentration of several percent. Quasi-resonant excitation with circularly polarized laser leads to formation of magnetic polarons with magnetization induced by the laser light. In this case all quantum dots are polarized in the same direction. In contrast, when the dots are populated using above the barrier excitation, with randomly polarized excitons, the resultant magnetization is random and varies from dot to dot. These experiments demonstrate a way to control the magnetization of magnetically doped quantum dots by means of light excitation. In addition, they point towards extremely long spin memory times in these structures, reaching hundreds of microseconds, making CdMnTe quantum dots promising candidates for local magnetic field sources on the nanoscale.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Beaulac, R., Schneider, L., Archer, P. I., Bacher, G., and Gamelin, D. R., Science 325, 973 (2009).Google Scholar
2 Besombes, L., Leger, Y., Maingault, L., Ferrand, D., Mariette, H., and Cibert, J., Phys. Rev. Lett. 93, 207403 (2004).Google Scholar
3 Goryca, M., Kazimierczuk, T., Nawrocki, M., Golnik, A., Gaj, J., Kossacki, P., Wojnar, P., and Karczewski, G., Phys. Rev. Lett. 103, 087401 (2009).Google Scholar
4 Mackowski, S., Gurung, T., Nguyen, T. A., Jackson, H. E., Smith, L. M., Karczewski, G., and Kossut, J., Appl. Phys. Lett. 84, 3337 (2004).Google Scholar
5 Maksimov, A. A., Bacher, G., McDonald, A., Kulakovskii, V. D., Forchel, A., Becker, C. R., Landwehr, G., and Molenkamp, L. W., Phys. Rev. B 62, 7767 (2000).Google Scholar
6 Mackowski, S., Nguyen, T. A., Jackson, H. E., Smith, L. M., Kossut, J., and Karczewski, G., Appl. Phys. Lett. 83, 5524 (2003).Google Scholar
7 Hewaparakrama, K. P., Wilson, A., Mackowski, S., Jackson, H. E., Smith, L. M., Kossut, J., and Karczewski, G., Appl. Phys. Lett. 85, 5463 (2004).Google Scholar
8 Awschalom, D. D., Warnock, J., Hong, J. M., Chang, L.L., Ketchen, M. B., and Gallagher, W. J., Phys. Rev. Lett. 62, 199 (1989).Google Scholar