Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-23T17:33:39.607Z Has data issue: false hasContentIssue false

Optically Active Nanoparticle Coated Polystyrene Spheres

Published online by Cambridge University Press:  13 May 2013

Brandy Kinkead
Affiliation:
Department of Chemistry and 4D LABS, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada
Abdiwali A. Ali
Affiliation:
Department of Chemistry and 4D LABS, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada
John-C. Boyer
Affiliation:
Department of Chemistry and 4D LABS, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada
Byron D. Gates
Affiliation:
Department of Chemistry and 4D LABS, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada
Get access

Abstract

Nanoparticles (NPs) with either plasmonic or upconverting properties have been selectively coated onto the surfaces of polystyrene (PS) spheres, imparting their optical properties to the PS colloids. These NP coated PS spheres have many potential applications, such as in medicine as drug-delivery systems or diagnostic tools. To prepare the NP coated PS spheres, gold or core-shell NaYF4Tm0.5Yb30/NaYF4 NPs were synthesized and separately combined with amino-functionalized PS spheres. The mechanism by which the NPs adhered to the PS spheres is attributed to interactions of the NP and a polyvinylpyrrolidone additive with the surfaces of the PS spheres. Two-photon fluorescence microscopy and SERS analysis demonstrate the potential applications of these NP coated PS spheres.

Type
Articles
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bellah, M., Christensen, S.M. and Iqbal, S.M., J. Nanomater. 2012, 21 pages (2012).Google Scholar
Wang, F., Banerjee, D., Liu, Y., Chen, X. and Liu, X., Analyst 135 (8), 18391854 (2010).CrossRefGoogle Scholar
Jain, K.K., BMC Med. 8 (83), 11 pages (2010).CrossRefGoogle Scholar
Chen, J. and Zhao, J.X., Sensors 12 (3), 21 (2012).Google ScholarPubMed
(a) Haase, M. and Schäfer, H., Angew. Chem. Int. Ed. 50 (26), 58085829 (2011); (b) H. H. Gorris and O.S. Wolfbeis, Angew. Chem., Int. Ed. 52 (13) 3584–3600 (2013); (c) D.E. Achatz, R. Ali and O.S. Wolfbeis, Top. Curr. Chem. 300, 29–50 (2011); (d) D.K. Chatterjee, M.K. Gnanasammandhan and Y. Zhang, Small 6 (24), 2781–2795 (2010); (e) L. Y. Ang, M. E. Lim, L. C. Ong and Y. Zhang, Nanomedicine 6 (7), 15 (2011).CrossRefGoogle Scholar
Zeng, S., Yong, K.-T., Roy, I., Dinh, X.-Q., Yu, X. and Luan, F., Plasmonics 6 (3), 491506 (2011).CrossRefGoogle Scholar
(a) Chithrani, B.D. and Chan, W.C.W. Nano Lett. 7, 15421550 (2007); (b) P.-H. Yang, X. Sun, J.-F. Chiu, H. Sun and Q.-Y. He, Bioconjugate Chem. 16, 494–496 (2005).CrossRefGoogle Scholar
(a) Morandi, V., Marabelli, F., Amendola, V., Meneghetti, M. and Comoretto, D., J. Phys. Chem. C 112 (16), 62936298 (2008); (b) Z.-X. Li, L.-L. Li, H.-P. Zhou, Q. Yuan, C. Chen, L.-D. Sun and C.-H. Yan, Chem. Commun. 43, 6616–6618 (2009).CrossRefGoogle Scholar
Fischer, L.H., Harms, G.S. and Wolfbeis, O.S., Angew. Chem. Int. Ed. 50 (20), 45464551 (2011).CrossRefGoogle Scholar
(a) Lim, S.F., Riehn, R., Ryu, W.S., Khanarian, N., Tung, C.-K., Tank, D. and Austin, R. H., Nano Lett. 6, 169 (2006); (b) J.-C. Boyer, C.-J. Carling, S.Y. Chua, D. Wilson, B. Johnsen, D. Baillie and N.R. Branda, Chem. Eur. J. 18, 11 (2012).CrossRefGoogle Scholar
Chatterjee, D.K., Rufaihah, A.J. and Zhang, Y., Biomaterials 29 (7), 937943 (2008).CrossRefGoogle Scholar
(a) Daniel, M.C. and Astruc, D., Chem Rev. 104 (1), 293346 (2004); (b) E. Pensa, E. Cortes, G. Corthey, P. Carro, C. Vericat, M.H. Fonticelli, G. Benitez, A.A. Rubert and R.C. Salvarezza, Accounts Chem. Res. 45 (8), 1183–1192 (2012);(c) H. Yang, S.Y. Fung and M. Liu, Angew. Chem. Int. Ed. 50(41), 9643–9646 (2011);(d) D. A. Giljohann, D. S. Seferos, W.L. Daniel, M.D. Massich, P.C. Patel and C.A. Mirkin, Angew. Chem. Int. Ed. 49(19), 4166–4169 (2010);(e) A. Bahman, S. Bakhtiari, D. Hsiao, G. Jin, B.D. Gates and N.R. Branda, Angew. Chem. Int. Ed. 48 (23), 4166–4169 (2009);(f) E.A. Nance, G.F. Woodworth, K.A. Sailor, T.-Y. Shih, Q. Xu, G. Swmanathan, D. Xiang, C. Eberhart and J. Hanes, Sci. Transl. Med., 4 (149) 8 pages (2012) CrossRefGoogle Scholar
(a) Kelly, K.L., Coronado, E., Zhao, L.L. and Schatz, G.C., J. Phys. Chem. 107, 668677 (2003); (b) E. Boisselier and D. Astruc, D., Chem. Soc. Rev. 38, 1759–1782 (2009) CrossRefGoogle Scholar
(a) Halas, N.J., Lal, S., Link, S., Chang, W.S., Natelson, D., Hafner, J.H. and Nordlander, P., Adv. Mater. 24 (36), 48424877 (2012); (b) D.E. Lee, H. Koo, I. C. Sun, J.H. Ryu, K. Kim and I.C. Kwon, Chem. Soc. Rev. 41 (7), 2656–2672 (2012); (c) A. Taylor, K.M. Wilson, P. Murray, D.G. Fernig, and R. Levy, Chem. Soc. Rev. 41 (7) 2707–17 (2012);(d) E.C. Dreaden, A.M. Alkilany, X.H. Huang, C.J. Murphy and M.A. El-Sayed, Chem. Soc. Rev. 41 (7), 2740–2779 (2012).CrossRefGoogle Scholar
(a) Maier, S.A., Plasmonics: Fundamentals and Applications, (Springer, 2007), p. 1223; (b) P.L. Stiles, J.A. Dieringer, N.C. Shah and R.P. van Duyne, Annual Rev. Anal. Chem. 1, 601–626 (2008);(c) M. Fan, G.F.S. Andrade and A.G. Brolo, Anal. Chimica Acta, 693, 7–25 (2011);(d) S. Lal, N.K. Grady, J. Kundu, C.S. Levin, J.B. Lassiter, N.J. Halas, Chem. Soc. Rev. 37 (5), 898–911 (2008).CrossRefGoogle Scholar
Wang, F., Deng, R., Wang, J., Wang, Q., Han, Y., Zhu, H., Chen, X. and Liu, X., Nat. Mater. 10, 968973 (2011).CrossRefGoogle Scholar
(a) Li, Y., Pan, Y., Zhu, L., Wang, Z., Su, D. and Xue, G., Macromol. Rapid Comm. 32 (21), 17411747 (2011); (b) Y. Liu, M. Li and G. Chen, J. Mater. Chem. A 1 (3), 930–937 (2013);(c) V.L. Schmit, R. Martoglio, B. Scott, A.D. Strickland and K.T. Carron, J. Am. Chem. Soc. 134 (1), 59–62 (2011);(d) S. Li, Y. Xia, J. Zhang, J. Han and L. Jiang, Electrophoresis 31 (18), 3090–3096 (2010);(e) S.L. Westcott, S.J. Oldenburg, T.R. Lee and N.J. Halas, Langmuir 14 (19), 5396–5401 (1998);(f) S.-C. Hsiao, J.-L. Ou, Y. Sung, C.-P. Chang and M.-D. Ger, Colloid Polym. Sci. 288 (7), 787–794 (2010);(g) N. Phonthammachai and T.J. White, Langmuir 23 (23), 11421–11424 (2007);(h) M. Gellner, S. Niebling, H. Y. Kuchelmeister, C. Schmuck and S. Schluecker, Chem. Comm. 47, 12762–12764 (2011);(i) Q. Qu, S. Peng, D. Mangelings, X. Hu and C. Yan, Electrophoresis 31 (3), 556–562 (2010);(j) Y.-C. Cao, Z. Wang, X. Jin, X.-F. Hua, M.-X. Liu and Y.-D. Zhao, Colloids Surf., A 334 (1–3), 53–58 (2009);(k) Y. Wang, X. Chen and J.-J. Zhu, Electrochem. Comm. 11 (2), 323–326 (2009);(l) A. Dokoutchaev, J.T. James, S.C. Koene, S. Pathak, G.K.S. Prakash and M. E. Thompson, Chem. Mater. 11 (9), 2389–2399 (1999).CrossRefGoogle Scholar
Qian, H.S. and Zhang, Y.. Langmuir 24, 1212312125, (2008).CrossRefGoogle Scholar
Boyer, J.-C., Carling, C.-J., Gates, B.D., Branda, N.R. and Zhao, Y., J. Am. Chem. Soc. 132, 1576615772 (2011).CrossRefGoogle Scholar
Johnson, N.J.J., Sangeetha, N.M., Boyer, J.-C. and van Veggel, F.C.J.M., Nanoscale 2, 771 (2010).CrossRefGoogle Scholar
(a) Duff, D.G., Baiker, A. and Edwards, P.P., Langmuir 9, 23012309 (1993); (b) G.D. Moon, T. I. Lee, B. Kim, G. Chae, J. Kim, S. Kim, J.-M. Myoung and U. Jeong, 5 (11), 8600–12 (2011).CrossRefGoogle Scholar
Graf, C., Dembski, S., Hofmann, A. and Rühl, E., Langmuir 22 (13), 56045610 (2006).CrossRefGoogle Scholar
Anema, J.R., Brolo, A.G., Felten, A. and Bittencourt, C., J. Raman Spectrosc. 41, 745751 (2010).Google Scholar
Joo, S.W., Han, S.W. and Kim, K., J. Colloid Interface Sci. 240, 391399 (2001).CrossRefGoogle Scholar