Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-25T15:39:49.031Z Has data issue: false hasContentIssue false

Optical Waveguides Embedded in PCBs - A Real World Application of 3D Structures Written by TPA

Published online by Cambridge University Press:  01 February 2011

Ruth Houbertz
Affiliation:
[email protected], Fraunhofer ISC, Hybrid Materials for Microsystems and Micromedicine, Neunerplatz 2, Wuerzburg, 97082, Germany
Herbert Wolter
Affiliation:
[email protected], Fraunhofer ISC, Hybrid Materials for Microsystems and Micromedicine, Neunerplatz 2, Wuerzburg, 97082, Germany
Volker Schmidt
Affiliation:
[email protected], Joanneum Research, Institute of Nanostructured Materials and Photonics NMP, Franz-Pichler-Str. 30, Weiz, 8160, Austria
Ladislav Kuna
Affiliation:
[email protected], Joanneum Research, Institute of Nanostructured Materials and Photonics NMP, Franz-Pichler-Str. 30, Weiz, 8160, Austria
Valentin Satzinger
Affiliation:
[email protected], Joanneum Research, Institute of Nanostructured Materials and Photonics NMP, Franz-Pichler-Str. 30, Weiz, 8160, Austria
Christoph Wüchter
Affiliation:
[email protected], Fraunhofer IOF, Microoptics, Albert-Einstein-Str. 7, Jena, 07445, Germany
Gregor Langer
Affiliation:
[email protected], Austria Technologie & Systemtechnik, Fabriksgasse 13, Leoben, 8700, Austria
Get access

Abstract

The integration of optical interconnects in printed circuit boards (PCB) is a rapidly growing field worldwide due to a continuously increasing need for high-speed data transfer. There are any concepts discussed, among which are the integration of optical fibers or the generation of waveguides by UV lithography, embossing, or direct laser writing. The devices presented so far require many different materials and process steps, but particularly also highly-sophisticated assembly steps in order to couple the optoelectronic elements to the generated waveguides. In order to overcome these restrictions, an innovative approach is presented which allows the embedding of optoelectronic components and the generation of optical waveguides in only one optical material. This material is an inorganic-organic hybrid polymer, in which the waveguides are processed by two-photon absorption (TPA) processes, initiated by ultra-short laser pulses. In particular, due to this integration and the possibility of in situ positioning the optical waveguides with respect to the optoelectronic components by the TPA process, no complex packaging or assembly is necessary. Thus, the number of necessary processing steps is significantly reduced, which also contributes to the saving of resources such as energy or solvents. The material properties and the underlying processes will be discussed with respect to optical data transfer in PCBs.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Vandeputte, K., Daele, P. Van, Hoedt, E., Koetsem, J. Van, and Hossfeld, J., Low cost multi-fiber add/drop multiplexer demonstration system, Proc. of the 25th European Conference on Optical Communication, Nice, Vol. 1 (1999) 112.Google Scholar
[2] Schröder, H., Bauer, J., Ebling, F., Franke, M., Beier, A., Demmer, P., Süllau, W., Kostelnik, J., Mödinger, R., Pfeiffer, K., Ostrzinski, U., and Griese, E., Waveguide and packaging technology for optical backplanes and hybrid electrical-optical circuits, Proc. SPIE Vol. 6124 (2006) 612407–13.Google Scholar
[3] Kobayashi, J., Matsuura, T., Hida, Y., Sasaki, S., and Maruno, T., Fluorinated Polyimide Waveguides with Low Polarization-Dependent Loss and Their Applications to Thermooptic Switches, J. Lightwave Techn. 16 (1998) 1024.Google Scholar
[4] Steenberge, G. Van, Geerinck, P., Put, S. Van, Koetsem, J. Van, Ottevaere, H., Morlion, D., Thienpont, H., and Daele, P. Van, MT-Compatible Laser-Ablated Interconnections for Optical Printed Circuit Board, J. Lightwave Techn. 22 (2004) 2083.Google Scholar
[5] Griese, E., A high-performance hybrid electrical-optical interconnection technology for high-speed electronig systems, IEEE Trans. Adv. Packaging 24 (2001) 375.Google Scholar
[6] Tooley, F., Suyal, N., Bresson, F., Fritze, A., Gourlay, J., Walker, A., and Emmery, M., Optically written polymers used as optical interconnections and for hybridization, Opt. Mat. 17 (2001) 235.Google Scholar
[7] Eldada, L., Nanoengineered polymers for photonic integrated circuits, Proc. of SPIE 5931 (2005) 59310F–1.Google Scholar
[8] Registered trademark of the Fraunhofer-Gesellschaft für Angewandte Forschung e.V., Germany.Google Scholar
[9] Haas, K.-H., and Wolter, H., Properties of Polymer-Inorganic Composites, Encyclopedia of Materials: Science and Technology 7584 (2001) 1.Google Scholar
[10] Uhlig, S., Fröhlich, L., Chen, M., Arndt-Staufenbiel, N., Lang, G., Schröder, H., Houbertz, R., Popall, M., and Robertsson, M., Polymer optical interconnects - a scalable large-area panel processing approach, IEEE Trans. Adv. Packaging 29 (2006) 158.Google Scholar
[11] Streppel, U., Dannberg, P., Wächter, Ch., Bräuer, A., Fröhlich, L., Houbertz, R., and Popall, M., New wafer-scale fabrication method for stacked optical waveguide interconnects and 3D micro-optic structures using photoresponsive (inorganic-organic hybrid) polymers, Opt. Mater. 21 (2002) 475.Google Scholar
[12] Bräuer, A., Dannberg, P., Mann, G., and Popall, M., Precise Polymer Micro-Optical Systems, MRS Bull. 26 (2001) 519.Google Scholar
[13] Houbertz, R., Fröhlich, L., Popall, M., Streppel, U., Dannberg, P., Bräuer, A., Serbin, J., and Chichkov, B.N., Inorganic-Organic Hybrid Polymers for Information Technology: from Planar Technology to 3D Nanostructures, Adv. Eng. Mater. 5 (2003) 551.Google Scholar
[14] Robertsson, M.E., Hagel, O.J., Gustafsson, G., Dabek, A., Popall, M., Cergel, L., Wennekers, P., Kiely, P., Lebby, M., and Lindhal, T., O/e-MCM Packaging with New, Patternable Dielectric and Optical Materials, Proc. 48th Electron. Comp. Technol. Conf. (Seattle, Washington, USA), Institute of Electrical and Electronics Engineers, Inc. 1998) IEEE Catalogue No. 98CH36206 (1998), p. 1413.Google Scholar
[15] Haas, U., Haase, A., Satzinger, V., Pichler, H., Leising, G., Jakopic, G., Stadlober, B., Houbertz, R., Domann, G., and Schmitt, A., Hybrid polymers as tunable and directly-patternable gate dielectrics in organic thin-film transistors, Phys. Rev. B 73 (2006) 235339.Google Scholar
[16] Houbertz, R., Froehlich, L., Schulz, J., and Popall, M., Inorganic-organic Hybrid Materials (ORMOCER®s) for Multilayer Technology - Passivation and Dielectric Behavior, Mater. Res. Soc. Symp. Proc. 665 (2001) 321.Google Scholar
[17] Houbertz, R., Schulz, J., Froehlich, L., Domann, G., and Popall, M., Inorganic-organic hybrid materials for polymer electronic applications, Mater. Res. Soc. Symp. Proc. 769 (2003) 239.Google Scholar
[18] Maruo, S., Nakamura, O., and Kawata, S., Three-dimensional microfabrication with two-photon-absorbed photopolymerization, Opt. Lett. 22 (1997) 132.Google Scholar
[19] Houbertz, R., Declerck, P., Passinger, S., Ovsianikov, A., Serbin, J., and Chichkov, B.N., Investigations on the generation of photonic crystals using two-photon polymerization (2PP) of inorganic-organic hybrid polymers with ultra-short laser pulses, phys. stat. sol. (a) 204 (2007) 3662.Google Scholar
[20] Houbertz, R., Laser Interaction in Sol-Gel Based Materials – 3-D Lithography for Photonic Applications, Appl. Surf. Sci. 247 (2005) 504.Google Scholar
[21] Houbertz, R., Wolter, H., Dannberg, P., Serbin, J., and Uhlig, S., Advanced packaging materials for optical applications: bridging the gap between nm-size structures and large-area panel processing, Proc of SPIE 6126 (2006) 612605.Google Scholar
[22] Zehetner, H., Langer, G., Riester, M., Mündlein, M., Nicolics, J., and Houbertz, R., Thermal Analyses of a Multilayer with Embedded Vertical-Cavity Surface Emitting Lasers, Proc. of the IEEE Polytronic 2007, 15.-18.1.2007 Tokyo (J) (2007) 245.Google Scholar
[23] Schmidt, V., Kuna, L., Satzinger, V., Houbertz, R., Jakopic, G., and Leising, G., Application of two-photon 3D lithography for the fabrication of embedded ORMOCER® waveguides, Proc. of SPIE 6476 (2007) 64760P–1.Google Scholar
[24] Glebov, A.L., Lee, M.G., and Yokouchi, K., Integration technologies for pluggable backplane optical interconnect systems, Opt. Eng, 46 (2007) 015403.Google Scholar
[25] Houbertz, R., Uhlig, S., Glebov, A., to be submitted to Proc. of SPIE (2008).Google Scholar
[26] Langer, G. and Riester, M., Two-photon absorption for the realization of optical waveguides on printed circuit boards, Proc. of SPIE 6475 (2007) 64750X–1.Google Scholar
[27] Garhöfer, C., Experimental characterization of components for boards with embedded polymer waveguides, Diploma Thesis, TU Wien (2005).Google Scholar