Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-25T15:17:59.567Z Has data issue: false hasContentIssue false

Optical study of SiGe films grown with low temperature Si buffer

Published online by Cambridge University Press:  18 March 2011

Y. H. Luo
Affiliation:
Device Research Laboratory, Department of Electrical Engineering, University of California at Los Angeles, Los Angeles, CA 90095-1594
J. Wan
Affiliation:
Device Research Laboratory, Department of Electrical Engineering, University of California at Los Angeles, Los Angeles, CA 90095-1594
J. L. Liu
Affiliation:
Device Research Laboratory, Department of Electrical Engineering, University of California at Los Angeles, Los Angeles, CA 90095-1594
K. L. Wang
Affiliation:
Device Research Laboratory, Department of Electrical Engineering, University of California at Los Angeles, Los Angeles, CA 90095-1594
Get access

Abstract

In this work, SiGe films on low temperature Si buffer layers were grown by solid-source molecular beam epitaxy and characterized by atomic force microscope, photoluminescence and Raman spectroscopy. Effects of the growth temperature and the thickness of the low temperature Si buffer were studied. It was demonstrated that using proper growth conditions of the low temperature Si buffer, the Si buffer became tensily strained and gave rise to the compliant effect. High-quality SiGe films with low threading dislocation density have been obtained.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Ismail, K., LeGoues, F. K., Saenger, K. L., Arafa, M., Chu, J. O., Mooney, P. M., and Meyerson, B. S., Phys. Rev. Lett. 73, 3447 (1994).Google Scholar
2. Xie, Y. H., Monroe, D., Fitzgerald, E. A., Silverman, P.J., Theil, F. A., and Watson, G. P., Appl. Phys. Lett. 63, 2263 (1993).Google Scholar
3. Colace, L., Masini, G., Assanto, G., Luan, H.-C., Wada, K., and Kimerling, L.C., Appl. Phys. Lett. 76, 1231 (2000).Google Scholar
4. Hull, R., Bean, J. C., and Buescher, C., J. Appl. Phys. 66, 5837 (1989).Google Scholar
5. Liu, J. L., Moore, C. D., U'Ren, G. D., Luo, Y. H., Lu, Y., Jin, G., Thomas, S. G., Goorsky, M. S., and Wang, K. L., Appl. Phys. Lett. 75, 1586 (1999).Google Scholar
6. Luo, Y. H., Liu, J. L., Jin, G., Wang, K. L., Moore, C. D., Goorsky, M. A., Chih, C., and Tu, K. N., J. Electron. Mater. 29, 950 (2000).Google Scholar
7. Chen, H., Guo, L. W., Cui, Q., Hu, Q., Huang, Q., and Zhou, J. M., J. Appl. Phys. 79, 1167, (1996).Google Scholar
8. Luo, Y. H., Wan, J., Forrest, R. L., Liu, J. L., Jin, G., Goorsky, M. S., and Wang, K. L., Appl. Phys. Lett. 78, 454 (2001).Google Scholar
9. Tang, H. P., Vescan, L., Dieker, C., Schmidt, K., Luth, H., and Li, H. D., J. Cryst.Growth 125, 301 (1992).Google Scholar
10. Steinman, E. A., Vdovin, V. I., Yuhova, T. G., Avrutin, V. S., and Izyumskaya, N. F., Semicond. Sci. Technol. 14, 582 (1999).Google Scholar
11. Takahashi, J., and Makino, T., J. Appl. Phy. 63, 87 (1988).Google Scholar
12. Olego, D. J., Baumgart, H., and Celler, C. K., Appl. Phys. Lett. 51, 483 (1988).Google Scholar
13. Abstreiter, G., Brugger, H., Wolf, T., Jorke, H., and Herzog, H. J., Phys. Rev. Lett. 54, 2441 (1985).Google Scholar