Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-23T15:08:03.033Z Has data issue: false hasContentIssue false

Optical, Structural, and Electrical Properties of Vanadium Dioxide Grown on Sapphire Substrates with Different Crystallographic Orientations

Published online by Cambridge University Press:  11 December 2012

M. Nazari
Affiliation:
Department of Physics and Nano Tech Center, Texas Tech University, Lubbock, TX 79409 Nano Tech Center, Texas Tech University, Lubbock, TX 79409
Y. Zhao
Affiliation:
Nano Tech Center, Texas Tech University, Lubbock, TX 79409 Department of Electrical Engineering, Texas Tech University, Lubbock, TX 79409
Y. Zhu
Affiliation:
Nano Tech Center, Texas Tech University, Lubbock, TX 79409 Department of Electrical Engineering, Texas Tech University, Lubbock, TX 79409
V. V. Kuryatkov
Affiliation:
Nano Tech Center, Texas Tech University, Lubbock, TX 79409 Department of Electrical Engineering, Texas Tech University, Lubbock, TX 79409
A. A. Bernussi
Affiliation:
Nano Tech Center, Texas Tech University, Lubbock, TX 79409 Department of Electrical Engineering, Texas Tech University, Lubbock, TX 79409
Z. Fan
Affiliation:
Nano Tech Center, Texas Tech University, Lubbock, TX 79409 Department of Electrical Engineering, Texas Tech University, Lubbock, TX 79409
M. Holtz
Affiliation:
Department of Physics and Nano Tech Center, Texas Tech University, Lubbock, TX 79409 Nano Tech Center, Texas Tech University, Lubbock, TX 79409
Get access

Abstract

The phase transition of VO2 grown on sapphire having different crystallographic growth planes is examined experimentally. Measurements of electrical resistivity are compared with spectroscopic ellipsometry studies, to obtain complex index of refraction and plasma frequency, and transmission in the terahertz frequency range, each as a function of temperature.

Type
Articles
Copyright
Copyright © Materials Research Society 2012 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Imada, M., Fujimori, A., and Tokura, Y., Rev. Mod. Phys. 70, 1039 (1998).CrossRefGoogle Scholar
Zhu, Y., Zhao, Y., Holtz, M., Fan, Z., and Bernussi, A. A., J. Opt. Soc. Am. B 29, 2373 (2012).CrossRefGoogle Scholar
Nakajima, M., Takubo, N., Hiroi, Z., Ueda, Y., and Suemoto, T., Appl. Phys. Lett. 92, 011907 (2008).CrossRefGoogle Scholar
Chen, C. H., Zhu, Y. H., Zhao, Y., Lee, J. H., Wang, H. Y., Bernussi, A., Holtz, M., and Fan, Z. Y., Appl. Phys. Lett. 97 (2010).Google Scholar
Balu, R. and Ashrit, P. V., Appl. Phys. Lett. 92, 021904 (2008).CrossRefGoogle Scholar
Verleur, H. W., Barker, A. S. Jr., and Berglund, C. N., Phys. Rev. 172, 788 (1968).CrossRefGoogle Scholar
Berglund, C. N. and Guggenheim, H. J., Phys. Rev. 185, 1022 (1969).CrossRefGoogle Scholar
Zhao, Y., Lee, J. H., Zhu, Y., Nazari, M., Chen, C., Wang, H., Bernussi, A., Holtz, M., and Fan, Z., J. Appl. Phys. 111, 053533 (2012).CrossRefGoogle Scholar
Wu, J., Gu, Q., Guiton, B. S., de Leon, N. P., Ouyang, L., and Park, H., Nano Lett. 6, 2313 (2006).CrossRefGoogle Scholar
Sohn, J. I., Joo, H. J., Ahn, D., Lee, H. H., Porter, A. E., Kim, K., Kang, D. J., and Welland, M. E., Nano Lett. 9, 3392 (2009).CrossRefGoogle Scholar
Cao, J., Gu, Y., Fan, W., Chen, L. Q., Ogletree, D. F., Chen, K., Tamura, N., Kunz, M., Barrett, C., Seidel, J., and Wu, J., Nano Lett. 10, 2667 (2010).CrossRefGoogle Scholar
Jones, A. C., Berweger, S., Wei, J., Cobden, D., and Raschke, M. B., Nano Lett. 10, 1574 (2010).CrossRefGoogle Scholar
Gu, Y., Cao, J., Wu, J., and Chen, L.-Q., J. Appl. Phys. 108, 083517 (2010).CrossRefGoogle Scholar
Atkin, J. M., Berweger, S., Chavez, E. K., Raschke, M. B., Cao, J., Fan, W., and Wu, J., Phys. Rev. B 85, 020101 (2012).CrossRefGoogle Scholar
Marezio, M., McWhan, D. B., Remeika, J. P., and Dernier, P. D., Phys. Rev. B 5, 2541 (1972).CrossRefGoogle Scholar
Pouget, J. P., Launois, H., D’Haenens, J. P., Merenda, P., and Rice, T. M., Phys. Rev. Lett. 35, 873 (1975).CrossRefGoogle Scholar
Rice, T. M., Launois, H., and Pouget, J. P., Phys. Rev. Lett. 73, 3042 (1994).CrossRefGoogle Scholar
Chen, C. H. and Fan, Z. Y., Appl. Phys. Lett. 95 (2009).Google Scholar
Chen, C., Zhao, Y., Pan, X., Kuryatkov, V., Bernussi, A., Holtz, M., and Fan, Z., J. Appl. Phys. 110, 023707 (2011).CrossRefGoogle Scholar
Majumdar, A., Bogdanowicz, R. D., and Hippler, R., Photonic Lett. Poland, 37, 70 (2011).Google Scholar
Jellison, J. , G. E. and Modine, F. A., Appl. Phys. Lett. 69, 371 (1996).CrossRefGoogle Scholar
Qazilbash, M. M., Schafgans, A. A., Burch, K. S., Yun, S. J., Chae, B. G., Kim, B. J., Kim, H. T., and Basov, D. N., Phys. Rev. B 77, 115121 (2008).CrossRefGoogle Scholar
Okazaki, K., Sugai, S., Muraoka, Y., and Hiroi, Z., Phys. Rev. B 73, 165116 (2006).CrossRefGoogle Scholar
Nazari, M., Zhao, Y., Kuryatkov, V. V., Fan, Z. Y., Bernussi, A. A., and Holtz, M., (Submitted to Phys. Rev. B.Google Scholar