Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-03T01:49:16.186Z Has data issue: false hasContentIssue false

Optical Spectroscopy of the Charge Accumulation Layer in Mis Structures with Polymeric Insulator and Semiconductor Layers

Published online by Cambridge University Press:  25 February 2011

J. H. Burroughes
Affiliation:
Cavendish Laboratory, Madingley Road, Cambridge CB3 0HE, UK.
R. H. Friend
Affiliation:
Cavendish Laboratory, Madingley Road, Cambridge CB3 0HE, UK.
Get access

Abstract

Metal-Insulator-Semiconductor (MIS) and MISFET structures constructed with polyacetylene prepared by the Durham precursor route provide convenient systems for the investigation of charge storage and transport in this polymer. The charge accumulation layer is particularly easy to form, and is of particular interest because charge is introduced into the polymer without compensation by chemical dopants. Charge is stored in soliton-like excitations of the chain, and we are able to characterise these from optical measurements of their electronic excitations. We find that the nature of the soliton-like states is very sensitive to the structure of the polyacetylene at the interface between the insulator and polyacetylene, and we report here the properties of devices formed with various organic polymers as the insulator layers which we contrast with those formed with silicon dioxide.

Type
Research Article
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Edwards, J. H. and Feast, W. J., Polymer Commun. 21, 595 (1980).CrossRefGoogle Scholar
2. Burroughes, J. H., Jones, C. A. and Friend, R. H., Nature 335, 136 (1988).CrossRefGoogle Scholar
3. Burroughes, J. H., Jones, C. A., Lawrence, R. A. and Friend, R. H., in Conjugated Polymeric Materials: Opportunities in Electronics. Optoelectronics and Molecular Electronics, edited by Brédas, J-L and Chance, R. R., proceedings of NATO-ARW, Mons, Belgium, September 1989 (in press).Google Scholar
4. Tomozawa, H., Braun, D., Phillips, S., Heeger, A. J. and Kroemer, H., Synthetic Metals, 22, 63 (1987); 28, 687 (1989)CrossRefGoogle Scholar
5. Garnier, F. and Horowitz, G., Synthetic Metals 18, 693 (1987)CrossRefGoogle Scholar
6. Garnier, F., Horowitz, G. and Fichou, D., Synthetic Metals 28, 705 (1989).CrossRefGoogle Scholar
7. Koezuka, H. and Tsumara, A., Synthetic Metals 28, 753 (1989).CrossRefGoogle Scholar
8. Assadi, A., Svensson, C., Willander, M. and Inganäs, O., Appl. Phys. Lett. 53, 195 (1988) .CrossRefGoogle Scholar
9. Paloheimo, J., Punkka, E., Kuivalainen, P., Stubb, H. and Yli-Lahti, P., Acta Scandinavica, Electrical Engineering Series, No. El 64, 178 (1989).Google Scholar
10. Su, W. P., Schrieffer, J. R. and Heeger, A. J.: Phys. Rev. Lett. 42, 1698 (1979);CrossRefGoogle Scholar
Phys. Rev. B22, 2099 (1980); B28Z, 1138(E) (1983).CrossRefGoogle Scholar
11. Lawrence, R. A., Burroughes, J. H. and Friend, R. H., Springer Series on Solid State Sciences, 91, 127 (1989).CrossRefGoogle Scholar
12. Townsend, P. D. and Friend, R. H., Phys. Rev. B40, 3112 (1989).CrossRefGoogle Scholar
13. Friend, R. H., Bradley, D. D. C. and Townsend, P. D., J. Phys. D20, 1367 (1987).Google Scholar
14. Goetzberger, A. and Nicollian, E. H., Appl. Phys. Lett. 9, 12 (1966).CrossRefGoogle Scholar
15. Worland, R., Phillips, S. D., Walker, W. C. and Heeger, A. J., Synthetic Metals 28, D663 (1989).CrossRefGoogle Scholar
16. Phillips, S. D., Worland, R., Yu, G., Hagler, T., Freedman, R., Cao, Y., Yoon, V., Chiang, J., Walker, W. C. and Heeger, A. J. (preprint 1989).Google Scholar