Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-23T09:13:59.616Z Has data issue: false hasContentIssue false

Optical Properties of Nanostructured Electrodes

Published online by Cambridge University Press:  13 May 2013

Akram A. Khosroabadi
Affiliation:
College of Optical Sciences, The University of Arizona, Tucson, AZ 85721
Palash Gangopadhyay
Affiliation:
College of Optical Sciences, The University of Arizona, Tucson, AZ 85721
Binh Duong
Affiliation:
NanoScience Technology Center, University of Central Florida, FL 32826
Jayan Thomas
Affiliation:
NanoScience Technology Center, University of Central Florida, FL 32826 CREOL, The College of Optics and Photonics, and Department of Material Science and Engineering, University of Central Florida, FL 32826
Robert A. Norwood
Affiliation:
College of Optical Sciences, The University of Arizona, Tucson, AZ 85721
Get access

Abstract

A versatile and powerful new lithographic fabrication method has been used to fabricate a number of nano-architectured ordered 2-D indium tin oxide (ITO) and silver (Ag) electrodes. By careful tuning of the dimensions of the nanofeatures in the electrodes, the surface area can be enhanced as desired, in-turn changing resistivity and free carrier concentrations accordingly. Absorption spectra of the samples show the existence of a new optical bandgap, in addition to the bulk bandgap, that is smaller. Nanostructured electrodes show enhanced transparency compared to their planar counterparts and demonstrate typical surface plasmon characteristics. The resonance frequency can be tuned as well by changing the dimensions of the nanofeatures in the electrodes.

Type
Articles
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Ma, H., Liu, M. S., Jen, A. K-YInterface-tailored and nanoengineered polymeric materials for (opto) electronic devices, ” Polymer International 58, 594619 (2009).CrossRefGoogle Scholar
Lewis, S.R., Datta, S., Gui, M., Coker, E.L., Huggins, F.E., Daunert, S., Bachas, L., Bhattacharyya, D.Reactive nanostructured membranes for water purificationProc Natl Acad Sci U S A. 108(21):8577–82 (2011)CrossRefGoogle ScholarPubMed
Seeman, C. N., and Belcher, A. M.Emulating biology: building nanostructures from the bottom upPNAS 99, suppl. 2, 64516455(2002)CrossRefGoogle ScholarPubMed
Nicole, L., Boissiere, C., Grosso, D., Hesemann, P., Moreau, J., Sanchez, C. M.Advanced selective optical sensors based on periodically organized mesoporous hybrid silica thin filmsChem. Commun 20, 23122313(2004)CrossRefGoogle Scholar
Wei, D., Scherer, M.R.J., Bower, C., Andrew, P., Ryhänen, T., and Steiner, U.A nanostructured electrochromic supercapacitorNano Lett 12, 18571862 (2012)CrossRefGoogle ScholarPubMed
Colmenares, J. C., Luque, R., Campelo, S.M., Colmenares, F, Karpiński, Z. and Romero, A.A.Nanostructured photocatalysts and their applications in the photocatalytic transformation of lignocellulosic biomass: An OverviewMaterials 2, 22282258(2009)CrossRefGoogle Scholar
Su, L, Jing, Y. and Zhou, Z.Li ion battery materials with core–shell nanostructuresNanoscale 3, 39673983 ( 2011).CrossRefGoogle ScholarPubMed
Yu, K. and Chen, J.Enhancing solar cell efficiencies through 1-D nanostructuresNanoscale Res Lett 4,110 (2009).CrossRefGoogle Scholar
Hsu, M.H., Yu, P, Huang, J.H., Chang, C.H., Wu, C.W., Cheng, Y.C. and Chu, C.W.Balanced carrier transport in organic solar cells employing embedded indium-tin-oxide nanoelectrodes, ” Appl. Phys. Lett 98, pp. 073308–1–073308-3 (2011)CrossRefGoogle Scholar
Jonsson, G.E., Fredriksson, H., Sellappan, R., and Chakarov, D.Nanostructures for enhanced light absorption in solar energy devicesInternational Journal of Photoenergy 2011, Article ID 939807 (2011)Google Scholar
Leem, J.W, Yu, J.SIndium tin oxide subwavelength nanostructures with surface antireflection and superhydrophilicity for high-efficiency Si-based thin film solar cellsOpt Express 7; 431–40 (2012).CrossRefGoogle Scholar
Chen, J. Y., Chang, W.L., Huang, C. K., and Sun, K. W.Biomimetic nanostructured antireflection coating and its application on crystalline silicon solar cellsOptics Express 19, 14411 (2011).CrossRefGoogle ScholarPubMed
Thomas, J., Gangopadhyay, P., Araci, E., Norwood, R. A., and Peyghambarian, N., Nanoimprinting by melt processing: An easy technique to fabricate versatile nanostructures, ” Adv. Mater 23, 47824787 (2011).CrossRefGoogle ScholarPubMed
Khosroabadi, A.A., Gangopadhyay, P., Duong, B., Thomas, J., Sigdel, A. K., Berry, J. J., Gennett, T., Peyghambarian, N., Norwood, R. A., “Fabrication, electrical and optical properties of silver, indium tin oxide (ITO) and indium zinc oxide (IZO) nanostructure arrays”, Phys. Status Solidi A, DOI 10.1002/pssa.201329129 (2013)Google Scholar
Mohamed, H.A.The effect of annealing and ZnO dopant on the optoelectronic properties of ITO thin filmsJ. Phys. D: Appl. Phys 40, 42344240 (2007)CrossRefGoogle Scholar
Nordlander, P., Oubre, C., Prodan, E., Li, K. and Stockman, M. I., “Plasmon hybridization in nanoparticle dimmersNano Lett., Vol. 4, No. 5,899903 (2004)CrossRefGoogle Scholar