Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-27T02:42:33.418Z Has data issue: false hasContentIssue false

Optical properties of nanostructured carbon and gold nanoparticle hybrids

Published online by Cambridge University Press:  10 June 2014

Yuan Li
Affiliation:
Metallurgical and Materials Engineering Department, Center for Materials for Information Technology (MINT), The University of Alabama, Tuscaloosa, AL 35487, U.S.A.
Nitin Chopra*
Affiliation:
Metallurgical and Materials Engineering Department, Center for Materials for Information Technology (MINT), The University of Alabama, Tuscaloosa, AL 35487, U.S.A. Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL 35487, U.S.A.
*
*Corresponding Author E mail: [email protected], Tel: 205-348-4153, Fax: 205-348-2164
Get access

Abstract

We report simulation of optical properties of hybrid geometry comprised of multilayer graphene shell encapsulated gold nanoparticles loaded with carbon nanotubes. The discrete dipole approximation (DDA) method was employed. The results indicated that the optical properties of encapsulated gold nanoparticles were not suppressed by the carbon material coating. Furthermore, low scattering effects were also observed. The simulation method helped visualize the near-surface normalized electric field, which is directly related to the intensity of hot spots on the surface of these hybrid nanoarchitectures.

Type
Articles
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Keren, K., Berman, R. S., Buchstab, E., Sivan, U., and Braun, E., Science 302, 1380 (2003).CrossRefGoogle Scholar
Williams, K. A., Veenhuizen, P. T., Beatriz, G., and Dekker, C., Nature 420, 761 (2002).CrossRefGoogle Scholar
Goux‐Capes, L., Filoramo, A., and Patillon, J. N., AIP Conf. Proc. 725, 17 (2004).CrossRefGoogle Scholar
Postma, H. W. C., Teepen, T., Yao, Z., and Dekker, C., Science 293, 76 (2001).CrossRefGoogle Scholar
Bachtold, A., Hadley, P., Nakanishi, T., and Dekker, C., Science 294, 1317 (2001).CrossRefGoogle Scholar
Hornbaker, D. J., Kahng, S. J., Misra, S., and Yazdani, A., Science 295, 828 (2002).CrossRefGoogle Scholar
Yao, Z., Braidy, N., Botton, G. A., and Adronov, A., J. Am. Chem. Soc. 125, 16015 (2003).CrossRefGoogle Scholar
Chopra, N., Bachas, L. G., and Knecht, M., Chem. Mater. 21 1176 (2009).CrossRefGoogle Scholar
Flatau, P. J., and Draine, B. T., J. Opt. Soc. Am. A 11, 1491 (1994).Google Scholar
Draine, B. T., and Flatau, P. J., arXiv preprint arXiv 1305, 6497 (2013).Google Scholar
Wu, J., Shi, W., and Chopra, N., Carbon 68, 708 (2014).CrossRefGoogle Scholar
Creighton, J. A., and Eadon, D. G., J. Chem. Soc., Faraday Trans. 87, 3881 (1991).CrossRefGoogle Scholar
Zhu, S., Chen, T. P., Liu, Y. C., and Fung, S., J. Nanopart. Res. 14, 1 (2012).Google Scholar
Jain, P. K., Lee, K. S., El-Sayed, I. H., and El-Sayed, M. A., J. Phys. Chem. B 110, 7238 (2006).CrossRefGoogle Scholar
Bohren, C. F., and Huffman, D. R., John Wiley & Sons. 130, (2008)Google Scholar
Yamada, K., Miyajima, K., and Mafuné, F., J. Phys. Chem. C, 111, 11246 (2007).CrossRefGoogle Scholar