Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-28T23:28:35.382Z Has data issue: false hasContentIssue false

Optical Properties of Nanoparticle Pair Structures

Published online by Cambridge University Press:  17 March 2011

Marie L. Sandrock
Affiliation:
Department of Chemistry, Georgetown University, Washington, District of Columbia 20057
Mahnaz El-Kouedi
Affiliation:
Department of Chemistry, Georgetown University, Washington, District of Columbia 20057
Maryann Gluodenis
Affiliation:
Department of Chemistry, Georgetown University, Washington, District of Columbia 20057
Colby A. Foss Jr.
Affiliation:
Current address: Trex Enterprises Corporation, 3038 Aukele Street, Lihue, Hawaii, 96766
Get access

Abstract

The synthesis of nanoparticle pair structures via porous host electrochemical template synthesis reviewed. Electrochemical template synthesis offers two advantages over solution methods, namely: 1) control over particle pair structure and orientation; and 2) control over geometry, size and composition of each member of the particle pair. These features of electrochemical template synthesis allow for straightforward comparison of experimental and theoretical spectra. Orientation control allows for the evaluation of second order nonlinear optical properties of centrosymmetric and non-centrosymmetric nanoparticle pair systems. The dependence of Second Harmonic Generation intensity on particle pair shape size and orientation is discussed. The synthesis and linear spectra of metal-semiconductor nanoparticle pair structures are also discussed, with emphasis on interparticle physical and electromagnetic interactions.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Hayat, M.A., Colloidal Gold: Principles, Methods and Applications, (Academic Press, 1989).Google Scholar
2. Beesley, J.E., Proc. Royal Microscop. Soc., 20, 187 (1985).Google Scholar
3. Faraday, M., Philos. Trans., 147, 145 (1857).Google Scholar
4. Hulteen, J.C. and Duyne, R.P. van J. Vac. Sci. Tech., 13, 1553 (1995).Google Scholar
5. Tierney, M.J. and Martin, C.R., J. Phys. Chem., 93, 2878 (1989).Google Scholar
6. Preston, C.K. and Moskovits, M. J. Phys. Chem., 92, 2957 (1988).Google Scholar
7. Foss, C.A. Jr., Tierney, M.J., and Martin, C.R., J. Phys. Chem., 96, 9001 (1992).Google Scholar
8. Foss, C.A. Jr., Hornyak, G.L., J.A.Stockert, and Martin, C.R., J. Phys. Chem., 98, 2963 (1994).Google Scholar
9. Al-Rawashdeh, N.A.R., Sandrock, M.L., Seugling, C.J., and Foss, C.A. Jr., J. Phys. Chem. B, 102, 361 (1998).Google Scholar
10. Sandrock, M.L. and Foss, C.A. Jr., J. Phys. Chem. B, 103, 11398 (1999).Google Scholar
11. Sandrock, M.L., Pibel, C.D., Geiger, F.M., and Foss, C.A. Jr., J. Phys. Chem. B, 103, 2668 (1999).Google Scholar
12. El-Kouedi, M., Sandrock, M.L., Seugling, C.J., and Foss, C.A. Jr., Chem. Mater. 10, 3287 (1998).Google Scholar
13. El-Kouedi, M. and Foss, C.A. Jr., J. Phys. Chem. B, 104, 4031 (2000).Google Scholar
14. Shumilova, N.A. and Zutaeva, G.V., in Encyclopedia of Electrochemistry of the Elements, ed. Bard, A.J. (Marcel Dekker, 1978).Google Scholar
15. Sandrock, M.L., PhD Dissertation, Georgetown University, 2000.Google Scholar
16. Boyd, R.W., Nonlinear Optics, (Academic Press, 1992).Google Scholar
17. Sandrock, M.L. and Foss, C.A. Jr., manuscript in preparation.Google Scholar
18. Hua, X.M. and Gersten, J. I., Phys. Rev. B, 33, 3756 (1983).Google Scholar
19. Meier, M. and Wokaun, A., Optics Lett., 8, 851 (1983).Google Scholar