Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-25T17:35:26.687Z Has data issue: false hasContentIssue false

Optical Properties of Mn-doped GaN

Published online by Cambridge University Press:  01 February 2011

O. Gelhausen
Affiliation:
Microstructural Analysis Unit, University of Technology, Sydney, Broadway, NSW 2007, Australia
E. Malguth
Affiliation:
Microstructural Analysis Unit, University of Technology, Sydney, Broadway, NSW 2007, Australia Institute for Solid-State-Physics, Technical University Berlin, 10623 Berlin, Germany
M. R. Phillips
Affiliation:
Microstructural Analysis Unit, University of Technology, Sydney, Broadway, NSW 2007, Australia
E. M. Goldys
Affiliation:
Division of Information and Communication Sciences, Macquarie University, North Ryde, NSW 2109, Australia
M. Strassburg
Affiliation:
Institute for Solid-State-Physics, Technical University Berlin, 10623 Berlin, Germany Department of Physics and Astronomy, Georgia State University, Atlanta, GA-30303, USA
A. Hoffmann
Affiliation:
Institute for Solid-State-Physics, Technical University Berlin, 10623 Berlin, Germany
T. Graf
Affiliation:
Walter Schottky Institute, Technical University Munich, 85748 Garching, Germany
M. Gjukic
Affiliation:
Walter Schottky Institute, Technical University Munich, 85748 Garching, Germany
M. Stutzmann
Affiliation:
Walter Schottky Institute, Technical University Munich, 85748 Garching, Germany
Get access

Abstract

Molecular beam epitaxy-grown GaN with different Mn concentrations (5–23 × 10 cm-3) and codoped with Si were investigated by cathodoluminescence (CL) spectroscopy and optical transmission measurements. In the GaN:Mn, an intense absorption peak at 1.414 +/- 0.002 eV was observed. This peak was attributed to an internal T2∼> E transition of the deep neutral Mn3+ state since its intensity scaled with the Mn3+ concentration. The CL measurements showed that Mn-doping concentrations around 1020 cm-3 had three effects on the emission spectrum: (i) the donor bound exciton at 3.460 eV was reduced by more than one order of magnitude, (ii) the donor-acceptor-pair band at 3.27 eV was completely quenched and (iii) the yellow luminescence centered at 2.2 eV was the strongly decreased. The latter two effects were attributed to a reduced concentration of VGa. In the infrared spectral range, three broad, Mn-doping related CL emission bands centered at 1.01 ± 0.02 eV, 1.09 ± 0.02 eV and 1.25 ± 0.03 eV were observed. These bands might be related to deep donor complexes, which are generated as a result of the heavy Mn-doping, rather than internal transitions at the Mn atom.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Meyer, B.K., Hoffmann, A. and Thurian, P., Defect spectroscopy in the nitrides, in Gil, B. (ed.) Physics and Applications of Group III Nitride Semiconductor Compounds, Oxford University Press (1997), 242306 Google Scholar
2. Dietl, T., Ohno, H., Matsukura, F., Cibert, J. and Ferrand, D., Science 287, 1019 (2000)Google Scholar
3. Reed, M. L., El-Masry, N. A., Stadelmaier, H. H., Ritums, M. K., Reed, M. J., Parker, C. A., Roberts, J. C. and Bedair, S. M., Appl. Phys. Lett. 79, 3473 (2001)Google Scholar
4. Sasaki, T., Sonoda, S., Yamamoto, Y., Suga, K., Shimizu, S., Kindo, K. and Hori, H., J. Appl. Phys. 91, 7911 (2002)Google Scholar
5. Kronik, L., Jain, M. and Chelikowsky, J. R., Phys. Rev. B 66, 41203 (2002)Google Scholar
6. Schneider, J., Kaufmann, U., Wilkening, W., Baeumler, M., Kohl, F., Phys. Rev. Lett. 59, 240 (1987)Google Scholar
7. Graf, T., Gjukic, M., Brandt, M. S., Stutzmann, M. and Ambacher, O., Appl. Phys. Lett. 81, 5159 (2002)Google Scholar
8. Korotkov, R. Y., Gregie, J. M. and Wessels, B. W., Appl. Phys. Lett. 80, 1731 (2002)Google Scholar
9. Seo, S. S. A., Kim, M. W., Lee, Y. S., Noh, T. W., Park, Y. D., Thaler, G. T., Overberg, M. E., Abernathy, C. R. and Pearton, S. J., Appl. Phys. Lett. 82, 4749 (2003)Google Scholar
10. Baur, J., Kaufmann, U., Kunzer, M., Schneider, J., Amano, H., Akasaki, I., Detchprohm, T. and Hiramatsu, K., Materials Science Forum 196–201, 55 (1995)Google Scholar
11. Katayama-Yoshida, H. and Sato, K., Physica B 327, 337 (2003)Google Scholar
12. Kulatov, E., Nakayama, H., Mariette, H., Ohta, H., Uspenskii, Yu. A., Phys. Rev. B 66, 45203 (2002)Google Scholar
13. Graf, T., Gjukic, M., Hermann, M., Brandt, M. S., Stutzmann, M., Görgens, L., Philipp, J. B. and Ambacher, O., J. Appl. Phys. 93, 9697 (2003)Google Scholar
14. To avoid electron beam induced charging, the samples were coated with a thin carbon layer.Google Scholar
15. Dingle, R. and Ilegems, M., Solid State Commun. 9, 175 (1971)Google Scholar
16. Ogino, T. and Aoki, M., Jpn. J. Appl. Phys. 19, 2395 (1980)Google Scholar
17. Neugebauer, J. and Van de Walle, C. G., Appl. Phys. Lett. 69, 503 (1996)Google Scholar
18. Saarinen, K., Laine, T., Kuisma, S., Nissila, J., Hautojarvi, P., Dobrzynski, L., Baranowski, J. M., Pakula, K., Stepniewski, R., Wojdak, M., Wysmolek, A., Suski, T., Leszczynski, M., Grzegory, I. and Porowski, S., Phys. Rev. Lett. 79, 3030 (1997)Google Scholar
19. Monemar, B., Journal of Crystal Growth 189/190, 1 (1998)Google Scholar
20. Korotkov, R. Y., Gregie, J. M., Han, B. and Wessels, B. W., Physica B 308–310, 18 (2001)Google Scholar
21. Van de Walle, C. G., Phys. Rev. B 56, R10020 (1997)Google Scholar
22. Podsiadlo, S., Szyszkoa, T., Warsoa, G., Turos, A., Ratajczak, R., Kowalczyk, A., Gebicki, W., Strzalkowski, I., Grambole, D., Hermann, F., Vacuum 70, 207 (2003)Google Scholar
23. Kaufmann, U., Schlotter, P., Obloh, H., Köhler, K., and Maier, M., Phys. Rev. B 62, 10867 (2000)Google Scholar
24. Amano, H., Kito, M., Hiramatsu, K., and Akasaki, I., Jpn. J. Appl. Phys. 28, L2112 (1989)Google Scholar
25. Gelhausen, O., Phillips, M. R., Klein, H. N., and Goldys, E. M., Appl. Phys. Lett. 81, 3747 (2002)Google Scholar
26. Hovington, P., Drouin, D., and Gauvin, R., Scanning 19, 1 (1997)Google Scholar