Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-20T06:25:29.440Z Has data issue: false hasContentIssue false

Optical properties of Microcrystalline Silicon determined by Spectroscopic Ellipsometry and Photothermal Deflection Spectroscopy

Published online by Cambridge University Press:  01 February 2011

Kyung Hoon Jun
Affiliation:
Department of Electrical Engineering & Computer Science, KAIST, 373-1 Guseong-dong, Yuseong-gu, Daejeon 305-701, Korea
Helmut Stiebig
Affiliation:
Institute of Photovoltaics, Forschungszentrum Jülich GmbH, D-52425 Jülich, Germany
Reinhard Carius
Affiliation:
Institute of Photovoltaics, Forschungszentrum Jülich GmbH, D-52425 Jülich, Germany
Get access

Abstract

The effect of the microstructure and bonded hydrogen on the optical properties of microcrystalline films (μc-Si:H) was investigated by Spectroscopic Ellipsometry (SE) and Photothermal Deflection Spectroscopy (PDS). On samples with a high crystalline volume fraction we studied the reason for a large deviation of absorption coefficient in the energy range between 1.6 eV and 3.2 eV from the value predicted by effective medium theory. This enhancement can be attributed to scattering by the inhomogeneity of μc-Si:H, which is investigated by the introduction of the dense medium radiative transfer formalism to an optical scattering simulation. Further, we suggest strain as a reason for the enhanced absorption in highly crystalline μc-Si:H.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Vetterl, O., Finger, F., Carius, R., Hapke, P., Houben, L., Kluth, O., Lambertz, A., Mueck, A., Rech, B., and Wagner, H., Sol. Energy Mater. Sol. Cells 62, 97 (2000).10.1016/S0927-0248(99)00140-3Google Scholar
2. Shah, A., Vallat-Sauvain, E., Torres, P., Meier, J., Kroll, U., Hof, C., Droz, C., Goerlitzer, M., Wyrsch, N., and Vanecek, M., Mater. Sci. Eng. B69-70, 219 (2000).Google Scholar
3. Layadi, N., Cabarrocas, P. Rocai, Drevillon, B., and Solomon, I., Phys. Rev. B 52, 5136 (1995).10.1103/PhysRevB.52.5136Google Scholar
4. Petrik, P., Lohner, T., Fried, M., Biro, L. P., Khanh, N. Q., Gyutai, J., Lehnert, W., Schneider, C., and Ryssel, H., J. Appl. Phys. 87, 1734 (2000).10.1063/1.372085Google Scholar
5. Poruba, A., Remes, Z., Fric, J., Vanecek, M., Meier, J., Torres, P., Beck, N., Wyrsch, N., Shah, A., Proc. 14th EC-PVSEC, Barcelona, Spain 2105 (2001)Google Scholar
6. Jun, K.H., Stiebig, H., Carius, R., Wagner, H., Proc. 17th EC-PVSEC, Munich, Germany (2001)Google Scholar
7. Beyer, W. and Ghazala, M. S. Abo: Mater. Res. Soc. Symp. Proc. 507 (1998) 601.Google Scholar
8. Jellison, G. E. Jr, and Modine, F. A., Appl. Phys. Lett. 69 371 (1996).Google Scholar
9. Shin, R. T. and Kong, J. A., J. Appl. Phys. 52, 4221 (1981).10.1063/1.329271Google Scholar
10. Wen, B., Tsang, L., Winebrenner, D. P., Ishimaru, A., IEEE Trans. Geosci. Remote Sensing 28, 46 (1990).Google Scholar
11. Tsang, L. and Kong, J. A., in Scattering of Electromagnetic Waves Vol. I and III, (John Wiley & Sons, USA, 2001).10.1002/0471224278Google Scholar
12. Nix, W. D. and Clemens, B. M, J. Mater. Res. 14, 3467 (1999).Google Scholar