Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-27T02:35:21.885Z Has data issue: false hasContentIssue false

OPTICAL PROPERTIES OF Ge NANOWIRES GROWN ON SILICON (100) AND (111) SUBSTRATES

Published online by Cambridge University Press:  01 February 2011

V. Sharma
Affiliation:
Department of Electrical and Computer Engineering, New Jersey Institute of Technology, Newark, New Jersey 07102
B. V. Kamenev
Affiliation:
Department of Electrical and Computer Engineering, New Jersey Institute of Technology, Newark, New Jersey 07102
L. Tsybeskov
Affiliation:
Department of Electrical and Computer Engineering, New Jersey Institute of Technology, Newark, New Jersey 07102
T. I. Kamins
Affiliation:
Quantum Science Research, Hewlett-Packard Laboratories, Palo Alto, California 94304
Get access

Abstract

In this paper, we report Raman Scattering (RS) and photoluminescence (PL) measurements of Ge nanowires (NWs) grown via vapor-liquid-solid (VLS) using chemical vapor deposition silicon substrates consisting of (100) and (111) crystallographic orientations. Ge NWs grown are ∼40 nm in diameter, approximately a micrometer in length, and a sharp narrow Raman peak at ∼300 cm−1 indicates single crystal quality. An absence of SiGe peak in the Raman spectra indicates that SiGe interdiffusion is insignificant for the NW volume. Low temperature PL-intensity-dependence spectra indicate that the observed emission originates at the Ge NW – Si substrate interface, where SiGe intermixing has been detected. This interface is formed differently for (111) and (100) oriented Si substrates due to the <111> preferential growth direction of Ge NWs.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Ruecks, T., Kim, K., Joselevich, E., Tseng, G. Y., Cheung, C., Lieber, C. M., Science 289, 94 (2000).Google Scholar
2. Huang, M. H., Mao, S., Feick, H., Yan, H., Wu, Y., Kind, H., Weber, E., Russo, R., Yang, P., Science 292, 1897 (2001).Google Scholar
3. Morales, A. M., Lieber, C. M., Science 279, 208 (1998).Google Scholar
4. Yu, J., Chung, S., Heath, J. R., J. Phys. Chem. B 104, 11864 (2000).Google Scholar
5. Holmes, J. D., Johnston, K. P., Doty, R. C., Korgel, B. A., Science 287, 1471 (2000).Google Scholar
6. Shi, W. S., Peng, H. Y., Zheng, Y. F., Wang, N., Shang, N. G., Pan, Z. W., Lee, C. S., Lee, S. T., Adv. Mater. 12, 1343 (2000).Google Scholar
7. Kamins, T. I., Stanley Williams, R., Basile, D. P., Hesjedal, T., and Harris, J. S., J. Appl. Phys. 89, 1008 (2001).Google Scholar
8. Wu, Y., Yan, H., and Yang, P., Chemistry, Euro. J. 8, 1260 (2002).Google Scholar
9. Wu, Y., Yan, H., and Yang, P., Topics in Catalysis 19, 197 (2002).Google Scholar
10. Qi, J., White, J. M., Belcher, A. M., Masumoto, Y., Chemical Physics Letters 372, 763 (2003).Google Scholar
11. Kamins, T. I., Li, X., Stanley Williams, R., and Liu, X., Nano Letters 4, 503 (2004).Google Scholar
12. Grom, G.F., Lockwood, D.J., McCaffrey, J.P., Labbe, H.J., Fauchet, P.M., White, B. Jr, Diener, J., Kovalev, D., Koch, F., Tsybeskov, L., Nature 407, 358 (2000).Google Scholar
13. Yu, P. Y., Cardona, M., Fundamentals of Semiconductors: Physics and Materials Properties, Springer-Verlag, New York, 2001, pp. 617.Google Scholar
14. Sui, Z., Burke, H. H., Herman, I. P., Phys. Rev. B 48, 2162 (1993).Google Scholar
15. Davies, G., Phys. Rep. 176, 83 (1989).Google Scholar
16. Weber, J., Alonso, M. I., Phys. Rev. B 40, 5683 (1989).Google Scholar
17. Thurmond, C. D., J. Electrochem. Soc., 122, 1133 (1975).Google Scholar
18. Kamenev, B. V., Tsybeskov, L., Baribeau, J.-M., Lockwood, D. J., Appl. Phys. Lett. 84, 1293 (2004).Google Scholar
19. Füller, T., Konuma, M., Zipprich, J., and Banhart, F., Appl. Phys. A 69, 597 (1999).Google Scholar