Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-25T17:42:40.008Z Has data issue: false hasContentIssue false

Optical properties of GaN Photonic Crystal Membrane Nanocavities at Blue Wavelengths

Published online by Cambridge University Press:  01 February 2011

Yong-Seok Choi
Affiliation:
[email protected], University of California, Santa Barbara, California NanoSystems Institute, California NanoSystems Institute, 4670 Physical Sciences Building-North, UCSB, Santa Barbara, CA, 93106-6105, United States, (805) 893-4875, (805) 893-6132
Cedrik Meier
Affiliation:
[email protected], United States
Rajat Sharma
Affiliation:
Kevin Hennessy
Affiliation:
Elaine D. Haberer
Affiliation:
Shuji Nakamura
Affiliation:
Evelyn L. Hu
Affiliation:
Get access

Abstract

We have investigated the design parameters for high-Q photonic-crystal (PC) bandgap modes in the emission wavelengths of InGaN/GaN multiple quantum wells. We demonstrate experimental schemes to realize 2D triangular-lattice PC membrane structures, which is essential to obtain photonic bandgap (PBG) modes, and the optical properties of L7 membrane nanocavities that consist of seven missing holes in the Γ-K direction. L7 cavities show pronounced resonances with Q factors of 300 to 800 in the PBG as well as the enhancement of light extraction of the broad InGaN/GaN multiple-quantum-well emission by the 2D PBG.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Yablonovitch, E., Phys. Rev. Lett. 58 2059 (1987).CrossRefGoogle Scholar
2. Joannopoulos, J. D., Meade, R. D. and Winn, J. N., Photonic crystals: Molding the flow of light, (Princeton University Press, 1995).Google Scholar
3. edited by Nakamura, S. and Chichibu, S. F., Introduction to Nitride Semiconductor Blue Lasers and Light Emitting Diodes, (Taylor & Francis, 2000).CrossRefGoogle Scholar
4. Oder, T. N., Kim, K. H., Lin, J. Y., and Jiang, H. X., Appl. Phys. Lett. 84, 466 (2004)CrossRefGoogle Scholar
5. Arakawa, Y., IEEE. J. Select. Topics Quantum Electron. 8, 823, (2002).CrossRefGoogle Scholar
6. Tawara, T., Gotoh, H., Akasaka, T., Kobayashi, N., and Saitoh, T., Phys. Rev. Lett. 92, 256402 (2004)CrossRefGoogle Scholar
7. Santori, C., Gotzinger, S., Yamamoto, Y., Kako, S., Hoshino, K., and Arakawa, Y., 87, 051916 (2005).Google Scholar
8. Haberer, E. D., Sharma, R., Stonas, A. R., Nakamura, S., DenBaars, S. P., and Hu, E. L., Appl. Phys. Lett. 85 762 (2004)CrossRefGoogle Scholar
9. Sharma, R., Haberer, E. D., Meier, C., Hu, E. L., and Nakamura, S., Appl. Phys. Lett. 87, 051107 (2005).CrossRefGoogle Scholar
10. Choi, Y. S., Meier, C., Hennessy, K., Sharma, R., Haberer, E., Gao, Y., DenBaars, S. P., Nakamura, S., and Hu, E. L., Appl. Phys. Lett. in press.Google Scholar