Article contents
Optical Properties of Electrospun Nanofiber Substrates
Published online by Cambridge University Press: 31 January 2011
Abstract
Light impinging upon electrospun nanofiber substrates encounters a complex media where a multitude of factors controls the transmittance and reflectance of light through the structure. The chemical composition of the nanofiber plays a significant role in that it determines the index of refraction of individual fibers. However, the surrounding media (e.g., air, encapsulating polymer, etc.) also plays an equally important role. In addition, physical effects such as fiber diameter, fiber morphology, fiber packing density (i.e., structure void volume), and substrate thickness play a large role in determining the light management properties of nanofibers. Our research has demonstrated that the transmittance and reflectance of undoped nanofibers can be adjusted through proper manipulation of these factors. For example, similar electrospinning formulations can produce either highly transmitting or highly reflecting light structures depending upon fabrication parameters that impact the final properties of the nanofiber substrates. In addition, a degree of wavelength dependent reflectance and transmittance can be imparted simply by adjusting the physical properties of the nanofibers to promote preferential light scattering below selected frequencies. This paper provides an overview of various factors impacting the light management properties of nanofiber substrates and the importance of controlling these factors to meet end-use applications.
Keywords
- Type
- Research Article
- Information
- Copyright
- Copyright © Materials Research Society 2010
References
- 1
- Cited by