Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-06T06:13:56.278Z Has data issue: false hasContentIssue false

Optical Properties of Controllable Self-Assembled Lateral Nanostructures on InN, InAlN, and AlN Thin Films

Published online by Cambridge University Press:  11 February 2011

Yuri Danylyuk
Affiliation:
Department of ECE, Wayne State University, Detroit, MI 48202, U.S.A.
Dmitri Romanov
Affiliation:
Department of Physics, Temple University, Philadelphia, PA 19122, U.S.A.
Eric McCullen
Affiliation:
Department of ECE, Wayne State University, Detroit, MI 48202, U.S.A.
Daad Haddad
Affiliation:
Department of Physics, Wayne State University, Detroit, MI 48202, U.S.A.
Ratna Naik
Affiliation:
Department of Physics, Wayne State University, Detroit, MI 48202, U.S.A.
Gregory Auner
Affiliation:
Department of ECE, Wayne State University, Detroit, MI 48202, U.S.A.
Get access

Abstract

Utilizing plasma source molecular beam epitaxy (PSMBE), we have grown epitaxial InxAl1-xN films on (0001) sapphire substrates; the indium concentration, x, varied from 0 to 1. The atomic force microscopy of the films reveals characteristic surface patterns of nanometer scale. The feature size distribution is determined by the film composition and thickness. Both absorption and reflection spectra of the films have additional peaks below the fundamental absorption threshold. These peaks cannot be associated with N vacancies or any other known crystal defects and impurities. We attribute the peaks to electron confinement in the hillocks of the lateral structure by the strong electric field of piezoelectric and spontaneous polarization that is characteristic to nitride semiconductor compounds. The calculated values of the electron energy levels are in good agreement with the spectroscopic data; moreover, the electron confinement model explains the observed temperature dependence of the additional peaks. The hillock size control will allow one to control the optical and transport properties of the films.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Arakawa, Y., Someya, T., and Tachibana, K., Phys. Stat. Sol. (b) 224, 1 (2001).Google Scholar
2. Wu, J., Walukiewich, W., Yu, K.M., Ager, J.W. III, Haller, E.E., Lu, Hai, and Schaff, William J., Phys. Rev. B 66, 201403 (2002).Google Scholar
3. Yamaguchi, S., Kariya, M., Nitta, S., Takeuchi, T., Wetzel, C., Amano, H., Akasaki, I., Appl. Phys. Lett. 76, 876 (2000) and references therein.Google Scholar
4. Peng, T., Piprek, J., Qui, G., Olowoiafe, J.O., Unruh, K.M., Swann, C.P., Shubert, E. F., Appl. Phys. Lett. 71, 2439 (1997).Google Scholar
5. Kim, K.S., Saxler, A., Kung, P., Razaghi, M., Lim, K.Y., Appl. Phys. Lett. 71 (1997) 800.Google Scholar
6. Kubota, K., Kobayashi, Y., Fujimoto, K., J. Appl. Phys. 66 2984 (1989).Google Scholar
7. Guo, O., Ogawa, H. and Yoshida, A., J. Cryst. Growth 146, 462 (1995).Google Scholar
8. Jain, S.C., Willander, M., Narayan, J., and Van Overstraeten, R., J. Appl Phys. 87, 965 (2000).Google Scholar
9. Fiorentini, V., Bernardini, F., and Vanderbilt, D., Phys. Rev. Lett. 79, 3958 (1997).Google Scholar
10. Li, Y.-X., Salamanca-Riba, L., Wongchotingul, K., Zhou, P., Spence, M.G., and Jones, V.K., Mat. Res. Soc. Symp. Proc. Vol. 482, p. 137 (1998).Google Scholar
11. Andreev, A.D., Downes, J.R., and O'Reilly, E.P., Mat. Res. Soc. Symp. Proc. 639 G11.25.1G11.256 (2001).Google Scholar
12. Lefebvre, P., Allegre, J., Gil, B., Mathieu, H., Grandjean, N., Leroux, M., Massies, J., and Bigenwald, P., Phys. Rev. B 59, 1536315367 (1999).Google Scholar