Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-27T01:35:03.253Z Has data issue: false hasContentIssue false

Optical Properties of Cds Quantum Dots: The Key Role of the Spin-Orbit and Coulomb Interactions

Published online by Cambridge University Press:  10 February 2011

M. Chamarro
Affiliation:
GPS Universités Paris VI-VII and Université d'Evry val d'Essonne, France
V. Voliotis
Affiliation:
GPS Universités Paris VI-VII and Université d'Evry val d'Essonne, France
M. Dib
Affiliation:
GPS Universités Paris VI-VII and Université d'Evry val d'Essonne, France
T. Gacoin
Affiliation:
LPMC, Ecole Polytechnique, Palaiseau, France
C. Delerue
Affiliation:
IEMN, Dept ISEN, Villeneuve d'Ascq, France
G. Allan
Affiliation:
IEMN, Dept ISEN, Villeneuve d'Ascq, France
M. Lannoo
Affiliation:
IEMN, Dept ISEN, Villeneuve d'Ascq, France
Get access

Abstract

We study theoretically and experimentally the effects of the Coulomb and the spin-orbit coupling on the electronic structure of small quantum dots. A tight-binding calculation with restricted configuration interaction is developed in a typical case: very small cubic quantum dots for which the electron-hole exchange interaction is of the order of magnitude of the spinorbit interaction. Experimentally, resonant photoluminescence and photoluminescence excitation are used to obtain information on a single size of CdS quantum dot obtained by a chemical growth method.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Calcott, P.D.J., Nash, K.J., Canham, L.T., Kane, M.J., and Brumnhead, D., J. Phys. Cond. Matter 5, p. L91 (1993).10.1088/0953-8984/5/7/003Google Scholar
2. Chamarro, M., Gourdon, C., Lavallard, P., and Ekimov, A.I., Jpn. J. Appl. Phys. 34, Suppl. 34–1, p. 12 (1995); M. Chamarro, C. Gourdon, P. Lavallard, O. Lublinskaya, and A.I. Ekimov, Phys. Rev. B 53, p. 1336 (1996).10.7567/JJAPS.34S1.12Google Scholar
3. Nirmal, M., Norris, D.J., Kuno, M., Bawendi, M.G., Efros, Al.L., and Rosen, M., Phys. Rev. Lett. 75, p.3728 (1995).10.1103/PhysRevLett.75.3728Google Scholar
4. Micic, O.I., Cheong, H.M., Fu, H., Zunger, A., Sprague, J.R., Mascarenhas, A., and Nozik, A.J., J. Phys. Chem. B 101, p. 4904 (1997).10.1021/jp9704731Google Scholar
5. Banin, U., Lee, J.C., Guzelian, A.A., Kadavanich, A.V., and Alivisatos, A.P., Superlattices and Microstructures 22, p. 559 (1997).10.1006/spmi.1997.0504Google Scholar
6. Flytzanis, C., Hache, F., Klein, M.C., Ricard, D., and Roussignol, P., in Progress in Optics XXIX, edited by Wolf, E. (Elsevier Science Publisher B.V, 1991).Google Scholar
7. Golubkov, V.V., Ekimov, A.I., Onushchenko, A.A., and Tsekhomskii, V.A., Fiz. Khim. Stekla 6, p. 511 (1980).Google Scholar
8. Wang, Y., and Herron, N., J. Phys. Chem. 91, p. 257 (1987).10.1021/j100286a004Google Scholar
9. Nogami, M., Nagasaka, K., and Kato, E., J. Am. Chem. Soc. 7 (7) p. 2097 (1990).Google Scholar
10. Boilot, J.P, Biteau, J., Chaput, F., Gacoin, T., Brun, A., Darracq, B., Georges, P., and Levy, Y., Pure Appl. Opt. 7, p. 169 (1998).10.1088/0963-9659/7/2/007Google Scholar
11. Gacoin, T., Train, C., Chaput, F., Boilot, J.P., Aubert, P., Gandais, M., Wang, Y., and Lecomte, A., SPIE Sol-Gel Optics II 1758, p. 565 (1992).10.1117/12.132049Google Scholar
12. Ricolleau, C., Audinet, L., Gandais, M., Gacoin, T., Boilot, J.P., and Chamarro, M., J. Cryst. Growth 159, p. 861 (1996).10.1016/0022-0248(95)00661-3Google Scholar
13. Steigerwald, M.L., Allivisatos, A.P., Gibson, J.M., Harris, T.D., Kortan, R., Muller, A.J., Thayer, A.M., Duncan, T.M., Douglas, D.C., and Brus, L.E., J. Am. Chem. Soc. 110, p. 3046 (1988).10.1021/ja00218a008Google Scholar
14. Martin, E., Delerue, C., Allan, G., and Lannoo, M., Phys. Rev. B 50, p. 18258 (1994).10.1103/PhysRevB.50.18258Google Scholar
15. EOM Plane-wave User Guide, version 4.O.0, San Diego: Molecular Simulations (1996).Google Scholar
16. Dib, M., Chamarro, M., Voliotis, V., Fave, J.L., Guenaud, C., Roussignol, P., Gacoin, T., Boilot, J.P., Delerue, C., Allan, G., and Lannoo, M., Phys. Stat. Sol. b 212, p. 293 (1999).10.1002/(SICI)1521-3951(199904)212:2<293::AID-PSSB293>3.0.CO;2-J3.0.CO;2-J>Google Scholar
17. Takagahara, T. and Takade, K., Phys. Rev. B 53, p. R4205 (1996).10.1103/PhysRevB.53.R4205Google Scholar
18. Wang, L.W. and Zunger, A., Phys. Rev. B 53, p. 9579 (1996).10.1103/PhysRevB.53.9579Google Scholar
19. Herman, F. and Skillman, S., Atomic Structure Calculations, Prentice-Hall, New York, 1993.Google Scholar
20. Ramaniah, L.M. and Nair, S.V., Phys. Rev. B 47, p. 7132 (1993).10.1103/PhysRevB.47.7132Google Scholar
21. Ekimov, A.I., Efros, A.I.L., and Onushchenko, A.A., Solid State Comm. 56, p. 921 (1985).10.1016/S0038-1098(85)80025-9Google Scholar
22. Wang, Y. and Herron, N., Phys. Rev. B 42, p. 7252 (1990).Google Scholar
23. Ramsden, J.J., Webber, S.E., and Gratzel, M., J. Phys. Chem. 89, p. 2740 (1985).10.1021/j100259a007Google Scholar
24. Segall, B. and Marple, D.T.F., in Physics and Chemistry of II-VI Compounds, edited by Aven, M. and Presner, J.S., North-Holland Publ. Co., Amsterdam (1967).Google Scholar
25. Franceschetti, A. and Zunger, A., Phys. Rev. Lett. 78, p. 915 (1997).10.1103/PhysRevLett.78.915Google Scholar